Common Garlic (Allium sativum L.) has Potent Anti-Bacillus anthracis Activity
Mots clés
Abstrait
Ethnopharmacological relevance: Gastrointestinal anthrax, a disease caused by Bacillus anthracis, remains an important but relatively neglected endemic disease of animals and humans in remote areas of the Indian subcontinent and some parts of Africa. Its initial symptoms include diarrhea and stomachache. In the current study, several common plants indicated for diarrhea, dysentery, stomachache or as stomachic as per traditional knowledge in the Indian subcontinent, i.e., Aegle marmelos (L.) Correa (Bael), Allium cepa L. (Onion), Allium sativum L. (Garlic), Azadirachta indica A. Juss. (Neem), Berberis asiatica Roxb. ex DC. (Daruharidra), Coriandrum sativum L. (Coriander), Curcuma longa L. (Turmeric), Cynodon dactylon (L.) Pers. (Bermuda grass), Mangifera indica L. (Mango), Morus indica L. (Black mulberry), Ocimum tenuiflorum L. (Ocimum sanctum L., Holy Basil), Ocimum gratissimum L. (Ram Tulsi), Psidium guajava L. (Guava), Zingiber officinale Roscoe (Ginger), were evaluated for their anti-Bacillus anthracis property. The usage of Azadirachta indica A. Juss. and Curcuma longa L. by Santals (India), and Allium sp. by biblical people to alleviate anthrax-like symptoms is well documented, but the usage of other plants is traditionally only indicated for different gastrointestinal disturbances/conditions.
Aim of the study: Evaluate the above listed commonly available edible plants from the Indian subcontinent that are used in the traditional medicine to treat gastrointestinal diseases including those also indicated for anthrax-like symptoms for the presence of potent anti-B. anthracis activity in a form amenable to use by the general population in the endemic areas.
Materials and methods: Aqueous extracts made from fourteen plants indicated above were screened for their anti-B. anthracis activity using agar-well diffusion assay (AWDA) and broth microdilution methods. The Aqueous Garlic Extract (AGE) that displayed most potent anti-B. anthracis activity was assessed for its thermostability, stability under pH extremes encountered in the gastrointestinal tract, and potential antagonistic interaction with bile salts as well as the FDA-approved antibiotics used for anthrax control. The bioactive fractions from the AGE were isolated by TLC coupled bioautography followed by their characterization using GC-MS.
Results: Garlic (Allium sativum L.) extract was identified as the most promising candidate with bactericidal activity against B. anthracis. It consistently inhibited the growth of B. anthracis in AWDA and decreased the viable colony-forming unit counts in liquid-broth cultures by 6-logs within 6-12 h. The AGE displayed acceptable thermostability (>80% anti-B. anthracis activity retained on incubation at 50oC for 12 h) and stability in gastric pH range (2-8). It did not antagonize the activity of FDA-approved antibiotics used for anthrax control. GC-MS analysis of the TLC separated bioactive fractions of AGE indicated the presence of previously unreported constituents such as phthalic acid derivatives, acid esters, phenyl group-containing compounds, steroids etc. CONCLUSION: The Aqueous Garlic Extract (AGE) displayed potent anti-B. anthracis activity. It was better than that displayed by Azadirachta indica A. Juss. (Neem) and Mangifera indica L. while Curcuma longa L. (Turmeric) did not show any activity under the assay conditions used. Further work should be undertaken to explore the possible application of AGE in preventing anthrax incidences in endemic areas.
Keywords: Allium sativum; Anthrax; Bacillus anthracis; Edible plants; Garlic; Traditional medicine.