Page 1 de 65 résultats
Acetyl coenzyme A:salutaridinol-7-O-acetyltransferase, a highly substrate-specific enzyme, has been purified nearly 3,000-fold to homogeneity from Papaver somniferum plant cell suspension cultures. Purification was achieved by fractionated ammonium sulfate precipitation, dye-ligand affinity
In addition to codeine and morphine, three more compounds: narcotine (noscapine), papaverine, and thebaine were found in Indian and Netherlands poppy seeds (Papaver somniferum L). The compounds were detected by a GC/MS technique and the identities were confirmed by comparing retention times and ion
A high pressure liquid chromatographic isocratic procedure is described for determining and quantitating the 5 major alkaloids narcotine, papaverine, thebaine, codeine, and morphine in Papaver somniferum L. and thebaine in Papaver bracteatum Lindl. Other papaveraceous alkaloids, including
Based on numerical and graphic analyses of 6 x 6 diallele cross progenies (n (2) = 36) over two environments, dominance was found to be most prevalent (in overdominance range without being inflated by non-allelic interactions) in parents for latex yield, and morphine, codeine, thebaine, and
A cell-free extract from the opium poppy, Papaver somniferum, was prepared that utilized hydrogen peroxide to convert (+/-)-[3-3H]reticuline to [3H]salutaridine in 80-85% yield based on consumed [3-3H]reticuline. The phenolic-coupling enzyme activity was not detected in the crude homogenate of whole
Ten PGPR from different backgrounds were assayed on Papaver somniferum var. Madrigal to evaluate their potential as biotic elicitors to increase alkaloid content under the rationale that some microbe associated molecular patterns (MAMPs) are able to trigger plant metabolism. First, the 10 strains
BACKGROUND
Papaver somniferum is the commercial source of morphine and codeine. The isolation of effective genes involved in the morphine biosynthesis of P. somniferum is very important in the production of specific metabolites achieved using metabolic engi-neering techniques. In this pathway, the
We have combined high-performance liquid chromatography (HPLC) separations using a monolithic column with acidic potassium permanganate and tris(2,2'-bipyridyl)ruthenium(II) chemiluminescence detection in a rapid and highly sensitive method to monitor the process of extracting opiate alkaloids from
The effect of fertilizer on the yield and yield components of opium from Papaver somniferum L.cv.Ikkanshu were investigated from 1993 to 1995. The weight of opium per one capsule was tendency to increase in the order of peat moss > pulverized charcoal > compound fertilizer, but the differences among
In the present study morphinan, tetrahydrobenzylisoquinoline, benzo[c]phenanthridine, and phthalideisoquinoline alkaloids were determined qualitatively and quantitatively by HPLC and LC-MS analysis in tissues of the Tasmanian Papaver somniferum L. elite cultivar C048-6-14-64. The data were compared
The in vitro shoot culture of a T-DNA insertional mutant of Papaver somniferum L. established by the infection of Agrobacterium rhizogenes MAFF03-01724 accumulated thebaine instead of morphine as a major opium alkaloid. To develop a non-narcotic opium poppy and to gain insight into its genetic
Having a long history of traditional medicinal applications, Papaver somniferum is also known as a source of various pharmacologically highly active opiates. Consequently, their detection from plant extracts is an important analytical task and generally addressed by methods of GC and LC-MS.
The gene actions for yield and its attributes and their inheritance pattern based on five parameter model have been explored in four single crosses (NBIHT-5 × NBIHT-6, NBIHT-5 × NBMHT-1, NBMHT-1 × NBIHT-6 and NBMHT-2 × NBMHT-1) obtained using thebaine rich pure lines of opium poppy (Papaver
An HPLC method for the separation of six target alkaloids from Papaver somniferum L. (morphine, codeine, oripavine, thebaine, papaverine, and noscapine) was developed, optimized, and validated. The chromatographic behavior of these alkaloids was investigated using a reversed-phase chromatography at
Opium poppy (Papaver somniferum L.), known for biosynthesis of several therapeutically important benzylisoquinoline alkaloids (BIAs), has emerged as the premier organism to study plant alkaloid metabolism. The most prominent molecules produced in opium poppy include narcotic analgesic morphine, the