Page 1 de 28 résultats
4-Hydroxybenzoate polyprenyl diphosphate transferase (4HPT) is the key enzyme that transfers the prenyl side chain to the benzoquione frame in ubiquinone (UQ) biosynthesis. The Arabidopsis AtPPT1 cDNA encoding 4HPT was cloned by reverse transcription-polymerase chain reaction (RT-PCR) based on the
A mutant of Saccharomyces cerevisiae deleted for the COQ3 gene was constructed. COQ3 encodes a 3,4-dihydroxy-5-hexaprenylbenzoate (DHHB) methyltransferase that catalyses the fourth step in the biosynthesis of ubiquinone from p-hydroxybenzoic acid. A full length cDNA encoding a homologue of
Two solanesyl diphosphate synthases, designated SPS1 and SPS2, which are responsible for the synthesis of the isoprenoid side chain of either plastoquinone or ubiquinone in Arabidopsis thaliana, were identified. Heterologous expression of either SPS1 or SPS2 allowed the generation of UQ-9 in a
trans -Long-chain prenyl diphosphate synthases catalyse the sequential condensation of isopentenyl diphosphate (C(5)) units with allylic diphosphate to produce the C(30)-C(50) prenyl diphosphates, which are precursors of the side chains of prenylquinones. Based on the relationship between product
Solanesyl diphosphate (SPP) is regarded as the precursor of the side-chains of both plastoquinone and ubiquinone in Arabidopsis thaliana. We previously analyzed A. thaliana SPP synthase (At-SPS1) (Hirooka et al., Biochem. J., 370, 679-686 (2003)). In this study, we cloned a second SPP synthase
An aerobic, Gram-stain-negative, rod-shaped, DDT-resistant bacterium, designated strain CC-ALB-2(T), was isolated from the Arabidopsis thaliana rhizosphere. Strain CC-ALB-2(T) was able to grow at 25-37 °C, at pH 5.0-8.0, with 1.0% (w/v) NaCl and tolerate up to 200 mg l(-1) DDT. 16S rRNA gene
In order to ensure the cooperative function with the photosynthetic system, the mitochondrial respiratory chain needs to flexibly acclimate to a fluctuating light environment. The non-phosphorylating alternative oxidase (AOX) is a notable respiratory component that may support a cellular redox
In plants, the formation of isopentenyl diphosphate and dimethylallyl diphosphate, the central intermediates in the biosynthesis of isoprenoids, is compartmentalized: the mevalonate (MVA) pathway, which is localized to the cytosol, is responsible for the synthesis of sterols, certain sesquiterpenes,
Land plants possess the unique capacity to derive the benzenoid moiety of the vital respiratory cofactor, ubiquinone (coenzyme Q), from phenylpropanoid metabolism via β-oxidation of p-coumarate to form 4-hydroxybenzoate. Approximately half of the ubiquinone in plants comes from this pathway; the
The isoprenoid biosynthetic pathway provides intermediates for the synthesis of a multitude of natural products which serve numerous biochemical functions in plants: sterols (isoprenoids with a C30 backbone) are essential components of membranes; carotenoids (C40) and chlorophylls (which contain a
It is not known how plants make the benzenoid ring of ubiquinone, a vital respiratory cofactor. Here, we demonstrate that Arabidopsis thaliana uses for that purpose two separate biosynthetic branches stemming from phenylalanine and tyrosine. Gene network modeling and characterization of T-DNA
Under heterotrophic conditions, carbohydrate oxidation inside the mitochondrion is the primary energy source for cellular metabolism. However, during energy-limited conditions, alternative substrates are required to support respiration. Amino acid oxidation in plant cells plays a key role in this by
The NADH-ubiquinone oxidoreductase complex (complex I) (EC 1.6.5.3) is the main entrance site of electrons into the respiratory chain. In a variety of eukaryotic organisms, except animals and fungi (Opisthokonta), it contains an extra domain comprising trimers of putative γ-carbonic anhydrases,
Nitric oxide (NO) acts as a key molecule in many physiological processes in plants. In this study, the roles of NO in mitochondrial respiration were investigated in the calli from wild-type Arabidopsis and NO associated 1 mutant (Atnoa1) which has a reduced endogenous NO level. Long-term exposure of
The NADH-ubiquinone oxidoreductase [complex I (CI), EC 1.6.5.3] of the mitochondrial respiratory chain is the principal entry point of electrons, and vital in maintaining metabolism and the redox balance. In a variety of eukaryotic organisms, except animal and fungi (Opisthokonta), it contains an