Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Laboratory Investigation 1993-Apr

Ammonium chloride alters renal tubular cell growth and protein turnover.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Sábháiltear an nasc chuig an gearrthaisce
R Rabkin
M Palathumpat
T Tsao

Keywords

Coimriú

BACKGROUND

Since renal hypertrophy occurs in conditions associated with increased renal ammonia genesis it has been suggested that ammonia may stimulate renal growth. Indeed, quiescent cultured tubular epithelial cells exposed to NH4Cl undergo hypertrophy. However, ammonia inhibits liver regeneration in vivo and proliferation of cultured fibroblasts. This study was designed to evaluate the effect of ammonia (NH3/NH4+) as a regulator of kidney cell hypertrophy and also kidney cell proliferation.

METHODS

Cultured opossum kidney cells and primary rabbit proximal tubular epithelial cells were grown with or without (controls) NH4Cl present.

RESULTS

After 3 days exposure to 5-20 mM NH4Cl, there was a dose-dependent depression of cell replication that ranged between 8 and 63% compared with controls (p < 0.017). In contrast, cell volume and protein content were significantly greater in the NH4Cl-treated cells. At 20 mM NH4Cl the protein content of treated cells exceeded that of controls by as much of 75%. This difference in protein content could, in part, be related to the disparity in cell density. However, experiments performed with cells at similar density revealed that NH4Cl also has a direct effect on cell protein content that increased by 25%; this appeared to be a consequence of depressed protein breakdown and was not due to altered protein synthesis. Experiments with rabbit kidney cells revealed that inhibition of replication was associated with a decrease in DNA [3H]thymidine incorporation. Cell cycle analysis revealed a fall in the proportion of cells in the S + G2 + M phase compared with controls (22 versus 30%, respectively; p < 0.01). NH4Cl also inhibited the burst of replication that followed chemically induced hypoxic injury of quiescent opossum kidney cells.

CONCLUSIONS

We conclude that in addition to inducing hypertrophy, NH4Cl can inhibit tubular cell proliferation. Thus, while heightened ammoniagenesis in vivo may favor hypertrophy, this in vitro study raises the question whether an elevated intrarenal ammonia content might be harmful when cell replication is required. Acute tubular necrosis is a condition in which elevated ammonia levels and a requirement for cell replication coexist and could serve as an important model to study this question.

Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge