EST analysis reveals putative genes involved in glycyrrhizin biosynthesis.
Keywords
Coimriú
BACKGROUND
Glycyrrhiza uralensis is one of the most popular medicinal plants in the world and is also widely used in the flavoring of food and tobacco. Due to limited genomic and transcriptomic data, the biosynthetic pathway of glycyrrhizin, the major bioactive compound in G. uralensis, is currently unclear. Identification of candidate genes involved in the glycyrrhizin biosynthetic pathway will significantly contribute to the understanding of the biosynthetic and medicinal chemistry of this compound.
RESULTS
We used the 454 GS FLX platform and Titanium regents to produce a substantial expressed sequence tag (EST) dataset from the vegetative organs of G. uralensis. A total of 59,219 ESTs with an average read length of 409 bp were generated. 454 ESTs were combined with the 50,666 G. uralensis ESTs in GenBank. The combined ESTs were assembled into 27,229 unique sequences (11,694 contigs and 15,535 singletons). A total of 20,437 unique gene elements representing approximately 10,000 independent transcripts were annotated using BLAST searches (e-value CONCLUSIONS Using the 454 GS FLX platform and Titanium reagents, our study provides a high-quality EST database for G. uralensis. Based on the EST analysis, novel candidate genes related to the secondary metabolite pathway of glycyrrhizin, including novel genes encoding cytochrome P450s and glycosyltransferases, were found. With the assistance of organ-specific expression pattern analysis, 3 unigenes encoding cytochrome P450s and 6 unigenes encoding glycosyltransferases were selected as the candidates most likely to be involved in glycyrrhizin biosynthesis.