Interactions of thionin from Pyrularia pubera with dipalmitoylphosphatidylglycerol large unilamellar vesicles.
Keywords
Coimriú
The peptide toxin thionin from Pyrularia pubera binds to dipalmitoylphosphatidylglycerol (DPPG) large unilamellar vesicles as shown by an increase in the intensity and blue-shift of the fluorescence emission spectrum of the single tryptophan residue of the protein. The magnitude of these fluorescence changes increased with temperature near the thermotropic phase transition of DPPG (about 40 degrees C). Fluorescent probes sensitive to the structure and dynamics of the membrane were used to assess the effect of thionin binding on bilayer properties. The fluorescence emission spectra of Prodan, Patman, and Laurdan all showed spectral changes consistent with an increase in bilayer polarity at temperatures below the DPPG phase transition but a decrease in polarity at higher temperatures. Fluorescence polarization experiments and the ratio of monomer-to-excimer fluorescence of the probe 1,3-bis(1-pyrene)propane suggested that thionin increases the bilayer order above the transition temperature. Differential scanning calorimetry revealed that thionin broadens the transition and either increases or decreases the melting temperature depending on the concentration of the peptide. Taken together, the data are consistent with at least three distinct interactions of thionin with the bilayer: (1) thionin bound electrostatically to the bilayer surface; (2) tryptophan of the bound thionin inserted into the bilayer; (3) high-order aggregates of thionin-bound vesicles.