Over 4000 small chemicals have been identified as allergens capable of inducing skin sensitization. Many sensitizers are hypothesized to act as haptens producing novel antigens, which can be presented to T cells by human leukocyte antigens (HLAs). Recent studies suggest that some chemical allergens use hapten-independent mechanisms.To determine whether molecular docking can identify HLA molecules that bind skin-sensitizing chemical allergens.Structural models of HLA molecules were used as the basis for molecular docking of 22 chemical allergens. Allergens predicted to bind HLA-B*57:01 were tested for their ability to stimulate T cells by the use of proliferation and interferon-gamma enzyme-linked immunospot assays.Chemical allergens that did not satisfy the criteria for hapten activity in vitro were predicted to bind more strongly to common HLA isoforms than those with known hapten activity. HLA-B*57:01, which is an HLA allele required for drug hypersensitivity reactions, was predicted to bind several allergens, including benzyl benzoate, benzyl cinnamate, and benzyl salicylate. In in vitro T cell stimulation assays, benzyl salicylate and benzyl cinnamate were found to stimulate T cell responses from HLA-B*57:01 carriers.These data suggest that small-molecule skin sensitizers have the potential to interact with HLA, and show that T cell-based in vitro assays may be used to evaluate the immunogenicity of skin-sensitizing chemicals.