11 torthaí
Multiple drug resistance (MDR) remains a major clinical challenge for cancer treatment. P-glycoprotein is the major contributor and they exceed their role in the chemotherapy resistance of most of the malignancies. Attempts in several preclinical and clinical studies to reverse the MDR phenomenon by
Thirty-one 2'-hydroxychalcones were prepared via solid-phase synthesis by base-catalyzed aldol condensation of substituted 2'-hydroxyacetophenones and benzaldehydes. Chalcones were tested for their growth inhibitory activity in three human tumor cell lines (MCF-7, NCI-H460 and A375-C5) using the SRB
Vanadium compounds are well known for their therapeutic interventions against several diseases. Various biochemical attributes of vanadium complexes inspired us to evaluate the cancer cell killing efficacy of the vanadium complex, viz., vanadyl N-(2-hydroxyacetophenone) glycinate [VO(NG)2].
BACKGROUND
The tumor microenvironment (TME) renders tumor cells more resistant to chemotherapy. However, effective immunomodulators for cancer therapy are still elusive. We hypothesized that Mn-N-(2-hydroxyacetophenone) glycinate (MnNG), reported to be an antitumor agent, can modulate the
Induction of undesired toxicity and emergence of multidrug resistance (MDR) are the major obstacles for cancer treatment. Moreover, aggressive cancers are less sensitive towards existing chemotherapeutics. Therefore, selective targeting of cancers without inducing undesired side effects and
Chemotherapy is central to current treatment modality especially for advanced and metastatic colorectal and breast cancers. Targeting the key molecular events of the neoplastic cells may open a possibility to treat cancer. Although some improvements in understanding of colorectal and breast cancer
Eight Ti(iv) compounds 1-8, of the type [Ti(Ln)2] where Ln is a variously substituted dianionic tridentate acylhydrazone, were synthesized by reacting the appropriate hydrazide with 2-hydroxybenzaldehyde or 2'-hydroxyacetophenone and titanium(iv) tetra(isopropoxide) in a 2 : 2 : 1 molar ratio. The
Polydimethylsiloxane (PDMS) is widely used as a cell culture platform to produce micro- and nano-technology based microdevices. However, the native PDMS surface is not suitable for cell adhesion and is always subject to bacterial pollution and cancer cell invasion. Coating the PDMS surface with
One of the major reasons for multidrug resistance (MDR) in cancer is the overexpression of P-glycoprotein (P-gp, ABCB1), a drug efflux pump. A novel copper complex, namely, copper (II) N-(2-hydroxyacetophenone) glycinate (CuNG) previously synthesized and characterized by the authors had been tested
In a systematic effort to identify a potent anticancer agent, we synthesized 15 oxovanadium(IV) complexes and examined their cytotoxic activity against 14 different human cancer cell lines. The oxovanadium compounds included mono and bis ancillary ligands of 1,10-phenanthroline (phen) [VO(phen),
BACKGROUND
In search of a suitable GSH-depleting agent, a novel copper complex viz., copper N-(2-hydroxyacetophenone) glycinate (CuNG) has been synthesized, which was initially found to be a potential resistance modifying agent and later found to be an immunomodulator in mice model in different