Leathanach 1 ó 137 torthaí
Adipocytes serve not only as a storage depot of fats but also as endocrine cells secreting adipocytokines including tumor necrosis factor alpha (TNFalpha). Using preadipogenic 3T3-L1 cells, we attempt to determine the response of adipocytes at different stages of the life cycle to TNFalpha with
We show that lipopolysaccharide-free actetylated low-density lipoprotein (LDL), but not native LDL, stimulates tumor-necrosis factor-alpha (TNF-alpha) secretion by rat peritoneal macrophages and the signal-transduction pathways involved. The role of the scavenger receptor (SR) in this response was
We investigated the effect of tumor necrosis factor-alpha (TNF alpha), a product of activated macrophages, on the release of arachidonate from dispersed anterior pituitary cells. Primary cultures of anterior pituitary cells from rats were preincubated with [3H]arachidonate to label their
Previous work on the mechanism of tumour-cell killing by the macrophage product tumour necrosis factor (TNF) is consistent with a free radical-induced process. In this study, free-radical involvement was sought by (i) investigating the effects on TNF cytolysis of anaerobic conditions, free-radical
Exposure of U937 cells to an otherwise nontoxic concentration of peroxynitrite promotes a rapid necrotic response in the presence of pharmacological inhibitors of phospholipase A2. A 12-fold higher concentration of the oxidant, in the absence of additional treatments, caused remarkably greater DNA
Antisense technology was successfully employed to selectively reduce the expression of Bcl-2 in U937 cells, while leaving their redox status intact. These cells displayed enhanced sensitivity to mitochondrial permeability transition (MPT)-dependent apoptosis induced by arsenite and underwent a
Experimental preservation time for pulsatile perfused dog kidneys was extended from three to five days by phospholipase A2 inhibition suggesting a pathomechanical role of products of phospholipolysis like thromboxane and leukotrienes in the development of acute graft failure after renal
OBJECTIVE
The authors hypothesized that TNF would induce eicosanoid synthesis, and a cyclooxygenase inhibitor would attenuate both eicosanoid synthesis and improve survival in an LD90 TNF-induced (150 ng/kg/i.v./5 min) mortality model.
BACKGROUND
Tumor necrosis factor is a cardinal mediator in
To investigate the role of tumor necrosis factor-alpha (TNF-alpha) in the brain in nociception, we injected recombinant human TNF-alpha (rhTNF-alpha; 1 pg-10 ng/rat) into the lateral cerebroventricle (LVC) in rats and observed the changes in paw withdrawal latency to radiant heat by using the
Cells adapt to adverse environmental conditions through a wide range of responses that are conserved throughout evolution. Physical agents such as ionizing radiation are known to initiate a stress response that is triggered by the recognition of DNA damage. We have identified a signaling pathway
Signal transduction pathways evoked by interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha) to stimulate expression of other cytokines in mesenchymal cells are not clearly understood. Stimulation of the murine bone marrow stromal cell line +/(+)-1.LDA 11 with IL-1 (500 U/ml) in
Tumor necrosis factor-alpha (TNF-alpha) is a cytokine that elicits cell responses by activating the mitogen-activated protein kinase (MAP kinase) cascade and transcription factors such as nuclear factor-kappaB (NF-kappaB). As these elements play a central role in the mechanisms of signaling involved
The role of cytosolic phospholipase A2 (cPLA2) in the regulation of ceramide formation was examined in a cell line (L929) responsive to the cytotoxic action of tumor necrosis factor alpha (TNFalpha). In L929 cells, the addition of TNFalpha resulted in the release of arachidonate, which was followed
Fas is a cell-surface receptor that belongs to the tumor-necrosis factor (TNF)/nerve growth factor receptor family. Fas can transduce an apoptotic signal through the death domain in the cytoplasmic region, which has similarity with the corresponding region of the TNF type-I receptor. Here, we