Leathanach 1 ó 59 torthaí
This study was carried out to evaluate the anti-nociceptive and anti-inflammatory activities of carbon tetrachloride extract (CTCE) of Azadirachta indica fruit skin and its isolated constituent azadiradione at two different dose levels (50 and 100 mg kg⁻¹ body weight). Anti-nociceptive screening by
Thirty-one nortriterpenoids, including 28 limonoids (1-28) and 3 degraded limonoids (29-31), and one diterpenoid (32), were isolated from the seed extract of Azadirachta indica (neem). Among these, six were new compounds and their structures were established to be 15-hydroxyazadiradione (3),
Macrophage migration inhibitory factor (MIF) is responsible for proinflammatory reactions in various infectious and non-infectious diseases. We have investigated the mechanism of anti-inflammatory activity of epoxyazadiradione, a limonoid purified from neem (Azadirachta indica) fruits, against MIF.
Azadirachta indica (Meliaceae) extracts have been reported to exhibit anti-inflammatory and antinociceptive properties. However, the activities of azadirachtin, a limonoid and the major bioactive compound found in the extracts, have been poorly investigated in animal models. In the present study, we
Azadirachta indica is a plant of varied uses in Ayurveda since ancient times and is highly extolled by expert physicians and as well as practitioners of folk medicines. Almost every part of the tree has long been used in folklore and traditional systems of medicine for the treatment of a variety of
Seventeen limonoids (tetranortriterpenoids 1-17) were isolated from the n-hexane extract of Azadirachta indica (neem) seeds. The previously unidentified compound 16 was established by spectroscopy to be 17-defurano-17-oxosalannin. The effects of six compounds, 6 and 11-15, on melanogenesis in B16
In the present study, for the first time, biomimetization of hydroxyapatite (HA) with Azadirachta indica (AI) was proposed and established its antioxidant, antibacterial, and anti-inflammatory potential on lipopolysaccharide (LPS). The ethanolic extract of AI was found rich with phenolics and
Non-steroidal anti-inflammatory drugs (NSAIDS), such as ibuprofen, are widely used over-the-counter drugs to treat arthritis, but they are often associated with side effects. Herbal medicines have been used to treat various diseases such as arthritis, but the scientific profiles are not well
Azadirachta indica (neem tree) is used in traditional Indian medicine for its pharmacological properties including cancer prevention and treatment. Here, we studied a neem extract's anti-inflammatory potential via the nuclear factor-κB (NF-κB) signaling pathway, linked to cancer, inflammation, and
Chronic neuropathic pain is a common and widely recognized pain syndrome for patients and difficult to manage for physicians. Azadirachta indica (AI) possesses analgesic, anti-inflammatory, and antioxidant properties. To evaluate the neuroprotective effect of AI standardized extract in an animal
BACKGROUND
Azadirachta indica A. Juss. (Meliaceaes) leaves have been used traditionally to treat swelling and rheumatism in Indian cultures.
OBJECTIVE
To fractionate A. indica leaf extracts using bioactivity guided manner for identification of the active anti-inflammatory
The water soluble part of alcoholic extract of A. indica leaves at a dose of 200 mg/kg, p.o., exerted significant antiinflammatory activity in cotton pellet granuloma assay in rats. The extract also inhibited significantly the biochemical parameters (viz. DNA, RNA, lipid peroxide, acid phosphatase
Nimbidin is a mixture of tetranortriterpenes and is the major active principle of the seed oil of Azadirachta indica A. Juss (Meliaceae) possessing potent antiinflammatory and antiarthritic activities. The present study revealed that nimbidin significantly inhibited some of the functions of
The role of azadirachtin, an active component of a medicinal plant Neem (Azadirachta indica), on TNF-induced cell signaling in human cell lines was investigated. Azadirachtin blocks TNF-induced activation of nuclear factor kappaB (NF-kappaB) and also expression of NF-kappaB-dependent genes such as