Leathanach 1 ó 17 torthaí
In order to study the active constituents in the stem barks of Taxus cuspidata Sieb. et Zucc., led to the isolation and structural determination of three compounds. On the basis of chemical evidences and spectral analysis (UV, IR, 1HNMR, 13CNMR and FAB-MS,) the structures of I, II and III were
Ten known taxoids, paclitaxel, 7-epi-taxol, taxol C, baccatin VI, taxayuntin C, taxuyunnanine C and its analogues (2-5), and yunnanxane (6), and an abietane, taxamairin A, were produced in the callus culture of Taxus cuspidata cultivated on a modified Gamborg's B5 medium in the presence of 0.5 mg/L
An HPLC method was developed for quick scanning of taxanes from large numbers of plant cell suspension samples. The method was optimized for analysis of a range of taxanes of differing polarity. Identification of a standard mixture of paclitaxel and 12 related taxanes was achieved in less than 15
Accelerated solvent extraction (ASE) of paclitaxel and related compounds from Taxus cuspidata (Japanese yew) bark has been investigated under various conditions. In ASE, pressure is applied to the sample extraction cell to maintain the heated solvent in a liquid state during the extraction. This
Taxus plant suspension cell cultures provide a sustainable source of paclitaxel (Taxol) for the treatment of many cancers. To develop an optimal bioprocess for paclitaxel supply, taxane biosynthetic pathway regulation must be better understood. Here we examine the expression profile of paclitaxel
The acetylation of taxa-4(20),11(12)-dien-5alpha-ol is considered to be the third specific step of Taxol biosynthesis that precedes further hydroxylation of the taxane nucleus. An operationally soluble acetyl CoA:taxadienol-O-acetyl transferase was demonstrated in extracts of Taxus canadensis and
Systematic characterization of the taxoids in the needles of Taxus canadensis led to the discovery of seven taxanes along with three known congeners. Their structures were rigorously established by spectroscopic methods as 15-benzoyl-10-deacetyl-2-debenzoyl-10-dehydro-abeo-baccat in III;
A highly specific and sensitive method is described for determining taxol, cephalomannine, and baccatin III in crude plant extracts. Radical anions of the taxanes are formed by desorption chemical ionization, and a parent tandem mass spectrometric scan is used to recognize these compounds by their
A method is described for the simultaneous determination of paclitaxel and three related taxoids, 10-deacetylbaccatin III (10-DAB III), baccatin III, and cephalomannine, in the extracts from the needles of three Chinese yew species, Taxus cuspidata, T. chinensis, and T. media. SPE was applied as the
The 10-deacetylbaccatin III:10beta-O-acetyltransferase isolated from Taxus cuspidata regiospecifically transfers short-chain alkanoyl groups from their corresponding CoA thioesters to the C10 hydroxyl of 10-deacetylbaccatin III. This 10-O-acetyltransferase along with five other Taxus
The cDNA clone for a 10-deacetylbaccatin III-10-O-acetyl transferase, which catalyzes formation of the last diterpene intermediate in the Taxol biosynthetic pathway, has been isolated from Taxus cuspidata. By using consensus sequences from an assembly of transacylases of plant origin and from many
A method of high-performance liquid chromatography-tandem mass spectrometry (LC-MS-MS) has been developed for the trace analysis of paclitaxel and other six taxoids in three Taxus species including Taxus cuspidata, Taxus media and Taxus chinensis var. mairiei. Seven taxoids were separated using a
Luteibacter sp., a new bacterium isolated from the soil around a Taxus cuspidata Sieb. et Zucc plant, was studied for its capability to metabolize cephalomannine (1). After preparative fermentation, eight metabolites were obtained and characterized as baccatin III (2), baccatin V (3),
Cell suspension cultures of Taxus cuspidata produce taxanes that are released from the outer surface of cells into the culture medium as free and bound alkaloids. Paclitaxel (Taxol (TM)), is an anti-cancer drug in short supply. It has a taxane ring derived from baccatin III and a C-13
The structural pharmacophore of Taxol, responsible for binding the N terminus of the beta-subunit of tubulin to arrest cell proliferation, comprises, in part, the 13-O-(N-benzoyl-3-phenylisoserinoyl) side chain. To identify the side chain transferase of Taxol biosynthesis, a set of transacylases