Leathanach 1 ó 24 torthaí
Baicalein, a pure compound derived from Scutellaria baicalensis Georgi, protected cells from lethal damage in an ischemia-reperfusion model. This study was aimed to investigate the role of opioid receptors in mediating cardioprotection by baicalein against hypoxia-reoxygenation injury. By using
Hypoxia inducible factor (HIF) is a key transcription factor responsible for imparting adaptability to the cancer cells growing in tumors. HIF induces the modulation of glucose metabolism, angiogenesis, and prosurvival signaling. Therefore, HIF is one of the attractive targets to treat solid tumors.
Hypoxia induces an inflammatory activation of microglia during cerebral ischemia. The transcription factor of hypoxia-inducible genes hypoxia-inducible factor-1 (HIF-1) is known to be involved in inflammation and immune response. Although baicalein (BE), a flavonoid, is shown to have
Whilst the potential of neural stem cell (NSC)-based treatment is recognized worldwide and seems to offer a promising therapeutic option for stroke treatments, there is currently no full understanding regarding the effects of hypoxic and baicalein-enriched fraction (BEF) preconditioning approaches
OBJECTIVE
Baicalin and its aglycone baicalein are the major flavonoid components of the root of Scutellaria baicalensis. Recent studies have shown that they can attenuate oxidative stress in various in vitro models as they possess potent antioxidant activities. This study investigated alternative
Cancer cells can survive under hypoxia by metabolic reprogramming to achieve a high level of glycolysis, which contributes to the development of chemoresistance. Therefore, inhibition of glycolysis would be a novel strategy for overcoming hypoxia‑induced drug resistance. Baicalein, a flavonoid
Targeting the oxygen-sensing mechanisms of the hypoxiainducible factor (HIF) pathway provides pharmacological ways of manipulating the HIF response. Because HIF-1alpha-specific prolyl-4 hydroxylases (PHDs) prime degradation of HIF-1alpha, we have made an effort to find a small molecule capable of
12/15 Lipoxygenase has recently been described as potent propagator of oxidative stress and is closely associated with cognitive decline in neurodegenerative diseases. The mechanism/s behind 12/15 LOX involvement in cognitive deficits remain obscure. The current study has been designed to
Solar ultraviolet (UV) radiation causes skin damage including increases in skin thickness, edema, and flush. In this study, we examined the effects of two main flavonoids (wogonin and baicalein) isolated from the roots of Scutellaria baicalensis, a traditional remedy for allergic inflammatory
Previous studies suggest baicalein, in addition to its antioxidant effects, protects against hypoxia/reoxygenation injury via its pro-oxidant properties. We hypothesize that a brief period of baicalein treatment prior to ischemia/reperfusion (I/R) may trigger preconditioning protection via a
Background: Insufficient vascularization hampers bone tissue engineering strategies for reconstructing large bone defects. Delivery of prolyl-hydroxylase inhibitors (PHIs) is an interesting approach to upregulate vascular endothelial growth factor (VEGF) by
The neuroprotective effect of baicalein is generally attributed to inhibition of 12/15-lipoxygenase (12/15-LOX) and suppression of oxidative stress, but recent studies showed that baicalein also activates hypoxia-inducible factor-α (HIF1α) through inhibition of prolyl hydrolase 2 (PHD2) and
BACKGROUND
To investigate the protective effects and mechanism of baicalein (BAI), a naturally occurring flavonoid, against hypoxia-reoxygenation (HR) injury in renal tubular epithelial cells (HK-2).
METHODS
Cultured human renal proximal tubular cell line HK-2 was exposed to 24 h of hypoxia (5% CO2,
Oxidative stress has been widely implicated in the pathogenesis of hypoxia/reoxygenation (H/R) injury. San-Huang-Xie-Xin-Tang (SHXT), a widely used traditional Chinese medication, has been shown to possess antioxidant effects. Here, we investigated whether SHXT and its main component baicalin can
We previously demonstrated that baicalein could protect against liver ischemia/reperfusion (I/R) injury in mice. The exact mechanism of baicalein remains poorly understood. Autophagy plays an important role in protecting against I/R injury. This study was designed to determine whether baicalein