Leathanach 1 ó 43 torthaí
Casticin is one of the main components of the fruits of Vitex rotundifolia L. Studies have shown that casticin inhibits the growth of various cancer cells, including colon cancer. In the present study, the anti-carcinogenic effects of casticin on human colon cancer and the underlying mechanisms were
Casticin, a polymethoxyflavone derived from natural plants, has biological activities including induction of cell apoptosis. In this study, we showed the beneficial effects of casticin on the inhibition of prostate cancer cell metastasis. Casticin reduced total viable cell number, thus, we selected
Casticin is one of the major active components isolated from Fructus viticis Increasing studies have revealed that casticin has potential anticancer activity in various cancer cells, but its effects on breast cancer cell migration and invasion are still not well known. Therefore, the ability of cell
Background/aim: Casticin, one of the active components of Vitex rotundifolia L., presents biological and pharmacological activities including inhibition of migration, invasion and induction of apoptosis in numerous human cancer cells in
Casticin, a polymethoxyflavone, is reported to have anticancer activities. The aim of the present study was to examine the molecular mechanisms by which casticin induces apoptosis in ovarian cancer cells. The human ovarian cancer cell lines SKOV3 and A2780 were cultured in vitro. Various molecular
We studied the mechanism of anti-tumor activity of the flavonoid Casticin, derived from Achillea millefolium. Casticin anti-tumor activity results in cell growth arrest in G2/M and in apoptotic death. As a tubulin-binding agent (TBA), Casticin induces p21, which in turn inhibits Cdk1. Moreover,
BACKGROUND
Casticin is one of the main active components obtained from Fructus Viticis and has been reported to exert anti-carcinogenic activity on a variety of cancer cells but the precise mechanism underlying this activity remains unclear.
METHODS
Apoptotic activities of casticin (1.0 µmol/l) and
Casticin, a polymethoxyflavone from Fructus viticis used as an anti-inflammatory agent in Chinese traditional medicine, has been reported to have anti-cancer activity. The purpose of this study was to examine the apoptotic activity of casticin on human cervical cancer cells and its molecular
Casticin, a polymethoxyflavone, derived from natural plant Fructus Viticis exhibits biological activities including anti-cancer characteristics. The anti-cancer and alter gene expression of casticin on human colon cancer cells and the underlying mechanisms were investigated. Flow cytometric assay
Casticin, a polymethoxyflavone, present in natural plants, has been shown to have biological activities including anti-cancer activities. Herein, we investigated the anti-oral cancer activity of casticin on SCC-4 cells in vitro. Viable cells, cell cycle distribution, apoptotic cell death, reactive
Casticin shows anti-cancer effects in many types of cancer. However, there is no information regarding its role in DNA damage in human bladder cancer. The aim of this study was to investigate the effects of casticin on TSGH-8301 cells in vitro.Viability of Casticin, a flavonoid isolated from Vitex species, has been found to have anti-tumor property in multiple human cancers. The present study aimed to investigate the effect of casticin on the proliferation and apoptosis of esophageal cancer (EC) cells, and further illustrate the underlying mechanisms.
Casticin exerts anticarcinogenic activity in several types of cancers, including human hepatocellular carcinoma (HCC). The aim of the present study was to investigate the effects of casticin, which is derived from Fructus Viticis Simplicifoliae, on the self-renewal capacity of liver cancer stem
BACKGROUND
Casticin, the flavonoid extracted from Vitex rotundifolia L, exerts various biological effects, including anti-inflammatory and anti-cancer activity. The aim of this study is to investigate the effects and mechanisms of casticin in human gallbladder cancer cells.
METHODS
Human NOZ and
Casticin, a polymethoxyflavone, has been demonstrated to possess anticancer activities, yet no study has shown in detail that casticin induces DNA damage in lung cancer cells. The purpose of this study was to investigate the possible molecular mechanisms of casticin which induce DNA damage and