Leathanach 1 ó 196 torthaí
Chlorophyll b is synthesized from chlorophyll a and is found in the light-harvesting complexes of prochlorophytes, green algae, and both nonvascular and vascular plants. We have used conserved motifs from the chlorophyll a oxygenase (CAO) gene from Chlamydomonas reinhardtii to isolate a homologue
The genome of Arabidopsis thaliana is exceedingly small, in part because it lacks the large middle repetitive DNA component characteristic of other plants. In this paper we have characterized a member of the low copy DNA component: the gene family for the light-harvesting chlorophyll a/b-protein.
Arabidopsis thaliana carries three functional copies of the chlorophyll a/b-binding protein (cab) gene which code for an identical mature protein. DNA sequence comparison of all three cab promoters indicated that cab2 and cab3 are more closely related compared to cab1. Although the highest degree of
A second locus (Lhb1B) encoding Photosystem II Type I chlorophyll a/b-binding (CAB) polypeptides was identified in Arabidopsis thaliana. This locus carries two genes in an inverted orientation. The predicted sequences of the polypeptides encoded by these two genes show substantial divergence in
BACKGROUND
Non-invasive and high-throughput monitoring of drought in plants from its initiation to visible symptoms is essential to quest drought tolerant varieties. Among the existing methods, chlorophyll a fluorescence (ChlF) imaging has the potential to probe systematic changes in photosynthetic
Phytochrome action results in a large and rapid increase in the light-harvesting chlorophyll a/b-protein (LHCP) mRNA level in etiolated seedlings of Arabidopsis thaliana: the RNA increase is detectable within 1 hour after 1 minute red illumination, reaches a maximum 30-fold higher than the dark
The chlorophyll a/b, chlorophyll a/c, and chlorophyll a/a light-harvesting proteins are part of an extended gene family that also includes the transiently expressed stress proteins, the Elips (early light-induced proteins). Four Elip homologue proteins, encoded by single-copy nuclear genes, have
The composition of LHCII trimers as well as excitation energy transfer and charge separation in grana cores of Arabidopsis thaliana mutant lacking chlorophyll a/b binding protein Lhcb3 have been investigated and compared to those in wild-type plants. In grana cores of lhcb3 plants we observed
The cab genes which encode the light-harvesting chlorophyll a/b-protein (LHCP) are expressed normally with respect to phytochrome regulation in the hy-3 and hy-5 long hypocotyl mutants of Arabidopsis thaliana. In etiolated seedlings of these mutants as well as of the wild type, 1 min of red light
Cold acclimation modifies the photosynthetic machinery and enables plants to survive at sub-zero temperatures, whereas in warm habitats, many species suffer even at non-freezing temperatures. We have measured chlorophyll a fluorescence (ChlF) and CO2 assimilation to investigate the effects of cold
Leaf color change through chlorophyll degradation is a characteristic symptom of senescence. Magnesium removal from chlorophyll a is the initial step in chlorophyll a degradation, in a reaction catalyzed by Stay-Green (SGR). Arabidopsis thaliana has three SGR homologs, SGR1, SGR2, and SGR-like. When
The major light-harvesting complex in higher plants is LHC IIb. The LHC IIb of Arabidopsis thaliana contains 2 pigment-binding apoproteins of 28 and 25 kDa. To determine the relationship between them and the LHC IIb gene family members, each protein was purified to homogeneity, subjected to direct
The first step in chlorophyll a degradation is the extraction of the central Mg. This reaction is catalyzed by Mg-dechelatase encoded by Stay-Green (SGR) in land plants. SGR extracts Mg from chlorophyll a but not from chlorophyll b, and chlorophyll b must be converted to chlorophyll a before
Plants can change the size of their light harvesting complexes in response to growth at different light intensities. Although these changes are small compared to those observed in algae, their conservation in many plant species suggest they play an important role in photoacclimation. A polyclonal
The light-harvesting efficiency of a photosystem is thought to be largely dependent on its photosynthetic antenna size. It has been suggested that antenna size is controlled by the biosynthesis of chlorophyll b. To verify this hypothesis, we overexpressed the enzyme for chlorophyll b biosynthesis,