Leathanach 1 ó 1688 torthaí
Cyclic nucleotides have been previously shown to modulate cell death processes in many cell types; however, the mechanisms by which cyclic nucleotides regulate apoptosis are unclear. In this study, we demonstrated that cAMP as well as cGMP analogs suppressed tumor necrosis factor alpha (TNFalpha)
We investigate the death route induced by potassium depletion in cerebellar granule cells in 0-15 h time range and study whether and how mutual relationship occurs between the cell antioxidant and proteolytic system. To achieve this, we incubated cells in the absence or presence of inhibitors of the
Melanoma escapes host defenses through a variety of means, including the elimination of immune effector cells within the tumor microenvironment. We have reported recently that murine and human tumors including melanoma induce premature apoptosis of dendritic cells both in vitro and in vivo. In this
The caspase activation cascade and mitochondrial changes are major biochemical reactions in the apoptotic cell death machinery. We attempted to clarify the temporal relationship between caspase activation, cytochrome c release, mitochondrial depolarization, and morphological changes that take place
Cells can respond differently to anti-CD95 antibody treatment. Type I cells show strong activation of caspase-8 and directly activate caspase-3. Type II cells weakly activate caspase-8 and must amplify their death signal through the mitochondria. These cells can be rescued by Bcl-x(L). Here we show
The protein kinase C (PKC) signal transduction pathway negatively regulates receptor-initiated cell death. In HeLa cells, tumor necrosis factor-alpha (TNF)-mediated cell death involved mitochondria and was blocked by the overexpression of Bcl-2. The PKC-specific inhibitor bisindolylmaleimide and the
Cytochrome c and tumor necrosis factor-alpha concentrations were measured in serum and cerebrospinal fluid samples from 10 patients with influenza-associated encephalopathy. In the acute exacerbation phase, serum tumor necrosis factor-alpha and cytochrome c values were high in patients with a poor
BACKGROUND
There are two fundamental forms of cell death: apoptosis and necrosis. Molecular studies of cell death thus far favor a model in which apoptosis and necrosis share very few molecular regulators. It appears that apoptotic processes triggered by a variety of stimuli converge on the
Tumor necrosis factor receptor-associated protein 1 protects cardiomyocytes against hypoxia, but the underlying mechanisms are not completely understood. In the present study, we used gain- and loss-of-function approaches to explore the effects of tumor necrosis factor receptor-associated protein 1
Objective: To investigate the effects and mechanism of mitochondrial transcription factor A (TFAM) and cytochrome c oxidase (COX) pathway in the energy production of hypoxic cardiomyocytes of rats regulated by tumor necrosis factor receptor associated protein 1 (TRAP1). Methods: The
OBJECTIVE
To explore the effect and the mechanism of Chaiqinchengqi decoction (CQCQD) on the apoptosis-necrosis switch of pancreatic acinar cells in acute necrotizing pancreatitis (ANP) in rats.
METHODS
Sixty Sprague-Dawley rats were randomized into the control group, the ANP group and the CQCQD
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in combination with chemotherapeutic drugs induces a synergistic apoptotic response in cancer cells. TRAIL death receptors have also been implicated in chemotherapeutic drug-induced apoptosis. This has lead to TRAIL being proposed as a
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)/Apo2L induces apoptosis in a wide variety of cancer and transformed cells. Activation of BID, a "BH3-domain-only" Bcl-2 family member, triggers the oligomerization of proapoptotic family members Bak or Bax, resulting in the release of
Although the role of cytochrome c in apoptosis is well established, details of its participation in signaling pathways in vivo are not completely understood. The knockout for the somatic isoform of cytochrome c caused embryonic lethality in mice, but derived embryonic fibroblasts were shown to be
The killing of L929 mouse fibroblasts by tumor necrosis factor-alpha (TNF-alpha) in the presence of 0.5 microg/ml actinomycin D (Act D) is prevented by inhibition of the mitochondrial permeability transition (MPT) with cyclosporin A (CyA) in combination with the phospholipase A(2) inhibitor