Irish
Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

diindolylmethane/brassica oleracea

Sábháiltear an nasc chuig an gearrthaisce
Leathanach 1 ó 33 torthaí
The aim of the study was to investigate the effect of the pasteurization process on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage. Pasteurization was run at a temperature of 80 °C for 5-30 min. Significant changes were only

Effect of boiling on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
The aim of the study was to investigate the effect of the boiling process on the content of ascorbigen, indole-3-carbinol, indole-3-acetonitrile, and 3,3'-diindolylmethane in fermented cabbage. The cabbage was boiled for 5 to 60 min. Boiling resulted in a decrease of the total content of the
3,3 Diindolylmethane (DIM) is a major digestive product of indole-3 carbinol, obtained from Brassica family vegetables such as broccoli, cabbage and Brussels sprouts. This study aimed to investigate the effects of DIM on sperm parameters, histological structures of testicular tissues, blood

Physicochemical and Microstructural Properties of Polymerized Whey Protein Encapsulated 3,3'-Diindolylmethane Nanoparticles.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
The fat-soluble antioxidant 3,3'-diindolylmethane (DIM), is a natural phytochemical found in Brassica vegetables, such as cabbage, broccoli, and Brussels sprouts. The stability of this compound is a major challenge for its applications. Polymerized whey protein (PWP)-based DIM nanoparticles

3,3'-Diindolylmethane suppresses high-fat diet-induced obesity through inhibiting adipogenesis of pre-adipocytes by targeting USP2 activity.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Indole-3-carbinol (I3C), a derivative abundant in cruciferous vegetables such as cabbage, is well known for its various health benefits such as chemo-preventive and anti-obesity effects. I3C is easily metabolized to 3,3'-diindolylmethane (DIM), a more stable form, in acidic conditions of the
OBJECTIVE The aim of this study was to evaluate the effect of white cabbage and sauerkraut juices of different origin and indole-3-carbinol (I3C) and diindolylmethane (DIM) on expression of CYP19 gene encoding aromatase, the key enzyme of estrogen synthesis. METHODS Human breast cell lines (MCF7,

Stability of glucosinolates and glucosinolate degradation products during storage of boiled white cabbage.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
The aim of the study was to investigate the effect of storage on the contents of glucosinolates (GLS) and their degradation products in a boiled white cabbage. A 24h storage at 4 °C resulted in a decrease in GLS content (20-40%, depending on the cooking time applied) in the edible parts. The most
Both white and Savoy-type cabbage added to a semi-purified diet at 25% dry weight and fed to rats ad lib. for 5 days significantly induced ethoxyresorufin (ERR) deethylation in the small and large intestine. Savoy cabbage also induced hepatic activity and, in general, exhibited a greater inducing
Epidemiological evidence suggests that high consumption of Brassica genus vegetables, such as broccoli, cabbage, and Brussels sprouts, is very effective in reducing the risks of several types of cancers. 3,3'-Diindolylmethane (DIM), one of the most abundant and biologically active dietary compounds
3,3'-Diindolylmethane (DIM), a major in vivo product of indole-3-carbinol (I3C), is a promising anticancer agent derived from vegetables of the Brassica genus including broccoli, Brussels sprouts and cabbage. We report here that DIM has a potent cytostatic effect in cultured human Ishikawa

Low levels of 3,3'-diindolylmethane activate estrogen receptor α and induce proliferation of breast cancer cells in the absence of estradiol.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
BACKGROUND 3,3'-diindolylmethane (DIM) is an acid-catalyzed dimer of idole-3-carbinol (I3C), a phytochemical found in cruciferous vegetables that include broccoli, Brussels sprouts and cabbage. DIM is an aryl hydrocarbon receptor (AhR) ligand and a potential anticancer agent, namely for the

Attenuation of multi-targeted proliferation-linked signaling by 3,3'-diindolylmethane (DIM): from bench to clinic.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Emerging evidence provide credible support in favor of the potential role of bioactive products derived from ingesting cruciferous vegetables such as broccoli, brussel sprouts, cauliflower and cabbage. Among many compounds, 3,3'-diindolylmethane (DIM) is generated in the acidic environment of the
Indole-3-carbinol (I3C), a compound that occurs naturally in Brassica vegetables such as cabbage and broccoli, can induce a G1 cell-cycle arrest of human MCF-7 breast cancer cells that is accompanied by the selective inhibition of cyclin-dependent kinase 6 (Cdk6) expression and stimulation of

Cellular and Molecular Mechanisms of 3,3'-Diindolylmethane in Gastrointestinal Cancer.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Studies in humans have shown that 3,3'-diindolylmethane (DIM), which is found in cruciferous vegetables, such as cabbage and broccoli, is effective in the attenuation of gastrointestinal cancers. This review presents the latest findings on the use, targets, and modes of action of DIM for the

Harnessing the Power of Cruciferous Vegetables: Developing a Biomarker for Brassica Vegetable Consumption Using Urinary 3,3'-Diindolylmethane.

Ní féidir ach le húsáideoirí cláraithe ailt a aistriú
Logáil Isteach / Cláraigh
Glucobrassicin in Brassica vegetables gives rise to indole-3-carbinol (I3C), a compound with potent anticancer effects in preclinical models. We previously showed that the urinary metabolite 3,3'-diindolylmethane (DIM) could discriminate between volunteers fed high and low doses of Brassica
Bí ar ár
leathanach facebook

An bunachar luibheanna míochaine is iomláine le tacaíocht ón eolaíocht

  • Oibreacha i 55 teanga
  • Leigheasanna luibhe le tacaíocht ón eolaíocht
  • Aitheantas luibheanna de réir íomhá
  • Léarscáil GPS idirghníomhach - clibeáil luibheanna ar an láthair (ag teacht go luath)
  • Léigh foilseacháin eolaíochta a bhaineann le do chuardach
  • Cuardaigh luibheanna míochaine de réir a n-éifeachtaí
  • Eagraigh do chuid spéiseanna agus fanacht suas chun dáta leis an taighde nuachta, trialacha cliniciúla agus paitinní

Clóscríobh symptom nó galar agus léigh faoi luibheanna a d’fhéadfadh cabhrú, luibh a chlóscríobh agus galair agus comharthaí a úsáidtear ina choinne a fheiceáil.
* Tá an fhaisnéis uile bunaithe ar thaighde eolaíoch foilsithe

Google Play badgeApp Store badge