4 torthaí
An H(+)-pyrophosphatase (PPase) gene named TsVP involved in basic biochemical and physiological mechanisms was cloned from Thellungiella halophila. The deduced translation product has similar characteristics to H(+)-PPases from other species, such as Arabidopsis and rice, in terms of bioinformation.
The halophyte Thellungiella halophila (salt cress) is an ideal model system for studying the molecular mechanisms of salinity tolerance in plants. Herein, we report the identification of a stress-responsive cyclophilin gene (ThCYP1) from T. halophila, using fission yeast as a functional system. The
Inositol polyphosphate kinases play important roles in diverse cellular processes. In this study, the function of an inositol polyphosphate kinase gene homolog named ThIPK2 from a dicotyledonous halophyte Thellungiella halophila was investigated. The deduced translation product (ThIPK2) shares 85%
BACKGROUND
Salt stress is one of the major abiotic stresses affecting plant growth and productivity. Vacuolar H+-pyrophosphatase (H+-PPase) genes play an important role in salt stress tolerance in multiple species.
RESULTS
In this study, the promoter from the vacuolar H+-pyrophosphatase from