Leathanach 1 ó 31 torthaí
To develop an anti-obesity agent, we examined the combination effect of glucosyl hesperidin (G-hesperidin) and caffeine on obesity in mice. High-fat diet-induced obese KK mice were fed a low-fat diet with or without G-hesperidin, caffeine, or their combination for 2 weeks. Decreases in body weight
Endothelial dysfunction (ED) is involved in the development of atherosclerosis. Hesperidin, a citrus flavonoid with antioxidant and other biological properties, potentially exerts beneficial effects on endothelial function (EF).
We investigated the effect of hesperidin 2S supplementation on EF in
BACKGROUND
We have previously shown that a combination of glucosyl hesperidin (G-hesperidin) plus caffeine reduces accumulation of body fat, whereas G-hesperidin or caffeine alone shows little effect on high-fat diet-induced obesity in mice. The aim of this study is to evaluate the anti-obesity
Obesity is a chronic metabolic disease caused by multiple factors and is considered to be a risk factor for type 2 diabetes, cardiovascular disease, hypertension, stroke and various cancers. Hesperidin, a flavanone glycoside, is a natural phenolic compound with a wide range of biological effects.
Nonalcoholic steatohepatitis (NASH) is a common hepatic manifestation of metabolic syndrome and can lead to hepatic cirrhosis and cancer. It is considered that NASH is caused by multiple parallel events, including abnormal lipid metabolism, gut-derived-endotoxin-induced inflammation, and
OBJECTIVE
The present study assessed the effect of Ruscus aculeatus-hesperidin-methyl-chalcone-ascorbic acid (HMC-AA) on the quality of life (QoL) of patients suffering from chronic venous disorders (CVDs).
METHODS
An observational, multicentre and prospective study was performed with 917 Mexican
Natural products with anti-obesity effects and few side effects have attracted great attention recently. Citrus aurantium L. var. amara Engl. (CAVA) is popularly consumed as an edible and medicinal resource in China. However, its anti-obesity effects were poorly understood. The anti-obesity effects
We aimed to assess the potential effects of hesperidin and capsaicin, independently and in combination, to prevent the development of obesity and its related metabolic alterations in rats fed an obesogenic diet. Three-month-old male Wistar rats were divided into 5 groups: Control (animals fed a
Among obesity-associated disorders, low-grade inflammation has been described. The putative therapeutic properties of citrus and curcumin polyphenols could be associated with their anti-inflammatory properties. Two diets supplemented either with hesperidin (0.05 %) and naringin (0.1 %) from citrus
To explore the effects of hesperidin on glycolipid metabolic disorders and its mechanism in mice induced by high-fat diet, 40 male C57 mice were randomly divided into control group, OB group, low dose group (OB+ hes-low) and high dose group (OB+ hes-high) according to the diet. After 16 weeks, the
BACKGROUND
Although numerous human studies have shown consistent effects of some polyphenol-rich foods on several intermediate markers for cardiovascular diseases, it is still unknown whether their action could be specifically related to polyphenols.
OBJECTIVE
We investigated the effect of orange
BACKGROUND
We previously showed, in healthy, middle-aged, moderately overweight men, that orange juice decreases diastolic blood pressure and significantly improves postprandial microvascular endothelial reactivity and that hesperidin could be causally linked to the observed beneficial effect of
Recently, hesperidin, a flavonone mainly present in citrus fruits, has emerged as a new potential therapeutic agent able to modulate several cardiovascular diseases (CVDs) risk factors. Animal and in vitro studies demonstrate beneficial effects of hesperidin and its derived compounds on CVD risk
Leptin resistance and co-existing insulin resistance is considered as hallmark of diet-induced obesity. Here, we investigated therapeutic potential of hesperidin to improve leptin and insulin resistance using high fat diet (HFD)-induced obese experimental animal model. We also performed in silico