Leathanach 1 ó 59 torthaí
This study investigated the reversal effect of isotetrandrine, an isoquinoline alkaloid extracted from Caulis mahoniae, on P-glycoprotein-mediated multidrug resistance in human breast cancer doxorubicin-resistant (MCF-7/DOX) cells. RT-PCR assay and immunity histochemistry assay were used to
Berberine (BBR) is a natural alkaloid with significant antitumor activities against many types of cancer cells. In this study, we investigated the molecular mechanisms by which BBR repressed the metastatic potential of breast cancer cells. BBR was found to downregulate the enzymatic activities and
A number of 6-alkyl-12-formyl-5,6-dihydroindolol[2,1-a]isoquinolines were synthesized by the Bischler-Napieralski reaction from the respective 1-alkyl-2-(3-methoxyphenyl)ethylamines and bromo-substituted (methoxyphenyl)acetic acid chlorides followed by a second ring closure reaction involving a
The maximal therapeutic doses of the cytostatic drug doxorubicin (DOX) are strictly limited by the development of systemic toxicity, especially cardiotoxicity. The inhibition of DOX-metabolizing enzymes within cancer cells is possible strategy to improve DOX efficacy. In breast cancer cells (MCF7),
BACKGROUND
Coptisine, an isoquinoline alkaloid extracted from Coptidis rhizoma, has many biological activities such as antidiabetic, antimicrobial and antiviral actions. However, whether coptisine exerts anti-cancer metastasis effects remains unknown.
METHODS
Effects of coptisine on highly
A number of acetoxy-substituted 5,6-dihydroindolo[2,1-a]isoquinolines were synthesized and tested for binding affinity for steroid hormone receptors. All of the derivatives bind to the estrogen receptor with RBA values ranging from 1.5 to 17 (17 beta-estradiol = 100). Some of them show binding
The synthesis of a series of 35 substituted 3,4-diphenyl quinolines and isoquinolines is described. The majority of these molecules differ from all other triphenylethylene based antiestrogens by a different spatial location of the aminoalkyl side chain. The binding affinity of the most
Berberine (BBR) is an isoquinoline alkaloid extracted from medicinal plants such as Hydrastis canadensis, Berberis aristata and Coptis chinensis. BBR displays a number of beneficial roles in the treatment of various types of cancers, yet the precise mechanisms of its action remain unclear. Cisplatin
A new series of anti-cancer agents based on 1,2-diaryl-5,6-dihydropyrrolo[2,1-a]isoquinoline scaffold containing N,N-diethylamino-ethoxy, piperidinyl-ethoxy or morpholinyl-ethoxy group at the para position of the C-2 phenyl ring were synthesized and their cytotoxic activities were assessed against
Recently, we reported that 3-amino-6-(3-aminopropyl)-5,6-dihydro-5,11-dioxo-11H-indeno[1,2-c]isoquinoline (AM6-36), sharing structural similarity with naturally occurring isoquinolines, induced activities mediated by retinoid X receptor (RXR) response element accompanied by antiproliferative effects
Berberine, a common isoquinoline alkaloid, has been shown to possess anti-cancer activities. However, the underlying molecular mechanisms are still not completely understood. In the current study, we investigated the effects of berberine on cell growth, colony formation, cell cycle distribution, and
Berberine (BBR), an isoquinoline derivative alkaloid compound, has been reported to have anti-oxidant and anti-carcinogenic effects. A loss of functional p53 is involved with an increased risk of cancer proliferation and metastasis. Here, we investigated the effect of BBR on the transcriptional
As a part of ongoing studies in developing new anticancer agents, novel 1,2-dihydropyridine 4, thienopyridine 5, isoquinolines 6-20, acrylamide 21, thiazolidine 22, thiazoles 23-29 and thiophenes 33-35 bearing a biologically active quinoline nucleus were synthesized. The structure of newly
This work reports the synthesis, radiolabeling and preliminary in vitro evaluation of [(131)I]-5-iodo-N-[2-(6,7-dimethoxy-3,4-dihydro-1H-isoquinoline-2-yl)-ethyl]-2-methoxy-benzamide. The tributylstannylprecursor was synthesized with a yield of 38%. Radiolabeling was performed using an electrophilic
6-Alkyl-12-formyl-5,6-dihydroindolo[2,1-alpha]isoquinolines have been shown to inhibit the growth of human mammary carcinoma cells by an unknown mode of action. One of the possible molecular targets is the tubulin system which is involved in cell division. A number of