8 torthaí
To identify genes that are differentially expressed in tobacco in response to environmental changes and to decipher the mechanisms by which aromatic carotenoids are formed in tobacco, an Agilent Tobacco Gene Expression microarray was adapted for transcriptome comparison of tobacco leaves derived
Antibodies to neoxanthin agglutinate stroma-free swellable chloroplasts from tobacco (Nicotiana tabacum var. John William's Broadleaf) and Antirrhinum (Antirrhinum majus) whereas stroma-freed chloroplasts, which have lost the swellability are not agglutinated despite the fact that antibodies to
Photosystem I preparations were obtained from wild-type tobacco Nicotiana tabacum var. JWB, three chlorophyll-deficient tobacco mutants: Su/su, Su/su var. Aurea and yellow-green leaf patches of the variegated mutant NC 95, Spinacia oleracea and furthermore from the mesophilic cyanobacterium
The light-harvesting-complex (LHCP) was isolated from photosystem II of Nicotiana tabacum var. John William's Broadleaf by means of the detergent acetyl-beta-D-glucopyranoside and fractionating centrifugation. The D1-peptide of photosystem II was isolated as a dimer with the molecular mass of 66 kDa
Nicotiana glauca is a tobacco species that forms flowers with carotenoid-pigmented petals, sepals, pistil, ovary and nectary tissue. The carotenoids produced are lutein, ss-carotene as well as some violaxanthin and antheraxanthin. This tobacco species was genetically modified for ketocarotenoid
Lutein plays an important role in protecting the photosynthetic apparatus from photodamage and eliminating ROS to render normal physiological function of cells. As a rate-limiting step for lutein synthesis in plants, lycopene ε-cyclase catalyzes lycopene to δ-carotene. We cloned a lycopene ε-cyclase
The pathway of water-stress-induced abscisic acid (ABA) biosynthesis in etiolated and light-grown leaves has been elucidated (see A.D. Parry and R. Horgan, 1991, Physiol. Plant. 82, 320-326). Roots also have the ability to synthesise ABA in response to stress and it was therefore of interest to
Apocarotenoid compounds play diverse communication functions in plants, some of them being as hormones, pigments and volatiles. Apocarotenoids are the result of enzymatic cleavage of carotenoids catalyzed by carotenoid cleavage dioxygenase (CCD). The CCD4 family is the largest family of plant CCDs,