8 torthaí
The 1:1 inclusion complex of β-cyclodextrin and p-aminobenzoic acid was prepared and characterized by TG-DTA. The crystal structure of the complex was solved directly from powder X-ray diffraction data using the direct space approach and refined using Rietveld refinement techniques. The complex
The synthesis, purification, and characterization of mono-6-modified-beta-cyclodextrins bearing N-attached o-, m-, and p-aminobenzoic acids (2, 3, and 4, respectively) are presented. The structures in aqueous solution were investigated using one- and two-dimensional NMR spectroscopy. Detailed
Crystal structures of cyclomaltoheptaose (beta-cyclodextrin) complexes with p-aminobenzoic acid and o-aminobenzoic acid have been determined by single-crystal X-ray diffraction. The space group of the beta-cyclodextrin-p-aminobenzoic acid complex is P2(1) with a host:guest stoichiometry of 1:1, and
Cyclofructins composed of six (1, "CF6") to ten (5, "CF10") beta-(1-->2)-linked fructofuranose units were subjected to conformational analysis using Monte Carlo simulations based on the PIMM91 force-field. Breaking the molecular symmetry partially by alternating inclination of the spiro-type
Spectral characteristics of N-phenylanthranilic acid (NPAA) have been studied in different solvents, pH and beta-cyclodextrin (beta-CD) and compared with anthranilic acid (2-aminobenzoic acid, 2ABA). In all solvents a dual fluorescence is observed in NPAA, whereas 2ABA gives single emission.
Pancreaticogastrostomy (PG) has been widely used as an alternative to pancreatojejunostomy (PJ) in patients undergoing pancreaticoduodenectomy (PD), but its long-term exocrine function remains unclear. The present study aimed to measure the secretion of pancreatic α-amylase (p-AMY) A slow contraction may result in reduced gap formation when a restorative resin polymerizes in a dental cavity. It was the aim in the present work to investigate the rate of contraction in relation to composition of experimental light-curing resin composites. The monomer of the resin composites
Three copper(ii) complexes, [Cu(L1)(NO3)2] (C1), [Cu(L2)Cl2] (C2) and [Cu(L2)SO4]2·H2O (C3), were designed and synthesized by the reaction of Cu(NO3)2·3H2O, CuCl2·2H2O and CuSO4·5H2O with a quinoline-derived Schiff base ligand, L1 or L2, prepared by the condensation of quinoline-8-carbaldehyde with