11 torthaí
The concentrations of the glucoside picein and its aglucone piceol (4-hydroxy acetophenone) in the needles of Norway spruce (Picea abies (L.) Karsten) are considered indicators of plant stress. By use of two clones and a natural population of Norway spruce it was shown that the picein concentration
Eastern spruce budworm (Choristoneura fumiferiana Clemens) (ESBW) is a major forest pest which feeds on young shoots of white spruce (Picea glauca) and can cause landscape level economic and ecological losses. Release of acetophenone metabolites, piceol and pungenol, from their corresponding
Insect herbivory may drive evolution by selecting for trees with heritable resistance against defoliation. The spruce budworm (Choristoneura fumiferana, SBW) is a highly damaging forest insect pest that can affect population structure of white spruce (Picea glauca) in North America. Resistance
We review a recently discovered white spruce (Picea glauca) chemical defense against spruce budworm (Choristoneura fumiferana) involving hydroxyacetophenones. These defense metabolites detected in the foliage accumulate variably as the aglycons, piceol and pungenol, or the
Acetophenones are phenolic compounds involved in the resistance of white spruce (Picea glauca) against spruce budworm (Choristoneura fumiferiana), a major forest pest in North America. The acetophenones pungenol and piceol commonly accumulate in spruce foliage in the form of the corresponding
Three-year-old clonal Picea abies (L.) Karst. plants, grown either on a sandy (No. 1) or on a calcareous (No. 2) soil, were treated with ozone (100 microg m(-3) and peaks of up to 360 microg m(-3)) and acid mist (pH 3.0) over two vegetation periods. Needles of the current (1987) and previous (1986)
BACKGROUND
In ecological experiments, storage of plant material is often needed between harvesting and laboratory analyses when the number of samples is too large for immediate, fresh analyses. Thus, accuracy and comparability of the results call for pre-treatment methods where the chemical
Abstract- Ultraviolet-light screening potential of Norway spruce (Picea abies [L.] Karst.) needles was investigated by UV-spectroscopic, microscopic, fluorescence spectroscopic techniques as well as by HPLC, mass spectrometry and NMR spectroscopy. Results showed four potential barriers of UV
Secondary phenolic metabolites are involved in plant responses to various biotic stress factors, and are apparently important for the defense against fungal pathogens. In this study, we investigated their role in defense against the rust Chrysomyxa rhododendri in Norway spruce. The fungal pathogen
The occurrence and amount of soluble and insoluble phenolics in mycorrhizal and non-mycorrhizal roots of Picea abies (L.) Karst, were investigated, p-Hydroxybenzoic acid glucoside, picein, piceatannol and its glucoside, isorhapontin, catechin and ferulic acid could be identified by high-performance
The primary damaging reactions in spruce needles may operate as follows: 1) Trees under "stress" produce the plant hormone ethylene. 2) Ethylene and ozone react extremely fast forming hydrogen peroxide and formaldehyde, compounds which may damage the wax layer. 3) Ozone as a very aggressive oxidant