Leathanach 1 ó 41 torthaí
Polygonatum cyrtonema lectin (PCL), a mannose/sialic acid-binding lectin, has been reported to display remarkable inhibitory and cytotoxic activity toward cancer cells. However, the precise mechanism by which PCL induces tumor cell death is still only rudimentarily understood. In the present study,
Plant lectins, a group of highly diverse carbohydrate-binding proteins of non-immune origin, are ubiquitously distributed through a variety of plant species, and have recently drawn rising attention due to their remarkable ability to kill tumour cells using mechanisms implicated in autophagy. In
Polygonatum odoratum lectin (POL), a mannose-binding GNA-related lectin, has been reported to display remarkable anti-proliferative and apoptosis-inducing activities toward a variety of cancer cells; however, the precise molecular mechanisms by which POL induces cancer cell death are still elusive.
The anticancerous effects of PCHPs (HBSS, CHSS, DASS, and CASS) were investigated on Human cervical cancer Hela cells proliferation inhibition, cytotoxicity, caspase-3 activity, cell cycle, and apoptosis. The inhibition rate was expressed as CASS > HBSS > CHSS > DASS, with the maximum
OBJECTIVE
To investigate the anti-cancer effect of Polygonatum sibiricum polysaccharides (PSP) and the underlying mechanism.
METHODS
Tumor-bearing mice were randomly divided into normal saline (NS) group, adriamycin (ADM) group, PSP group and lipopolysaccharide (LPS) group. RAW264.7 cells were
This article reviews lectins of animal and plant origin that induce apoptosis and autophagy of cancer cells and hence possess the potential of being developed into anticancer drugs. Apoptosis-inducing lectins encompass galectins, C-type lectins, annexins, Haliotis discus discus lectin, Polygonatum
Methyl protodioscin (MPD) is a steroid saponin which has been well known for its pharmacological properties. Herein, we evaluated the anti-cancer activity of MPD for proliferation inhibition and apoptosis induction in Hela cells. MPD was purified from the rhizoma of Polygonatum sibiricum primarily
Traditional Chinese medicine (TCM) is important in the provision of anti-tumor drugs. Recently, studies have shown that certain types of TCM agents are able to control the growth of tumors, enhance the body's immune function and enhance the therapeutic effect of chemotherapeutic drugs. In women,
Polygonatum odoratum lectin (POL), isolated from traditional Chinese medicine herb (Mill.) Druce, has drawn rising attention due to its wide biological activities. In the present study, anti-tumor effects, including apoptosis- and autophagy-inducing properties of POL, were determined by a series of
Dioscin, a saponin extracted from the roots of Polygonatum zanlanscianense, shows several bioactivities such as antitumor, antifungal, and antiviral properties. Although, dioscin is already known to induce cell death in variety cancer cells, the molecular basis for dioscin-induced cell death was not
Inhibition of cancer-associated broblasts (CAFs) may improve the efficacy of cancer therapy. Polysaccharide extracted from polygonatum can selectively inhibit the growth of prostate-CAFs (<.001) without inhibiting the growth of normal broblasts (NAFs). Polysaccharides from polygonatum stimulate
Polygonatum cyrtonema Lectin (PCL), which is classified as a monocot mannose-binding lectin, has received great regards for its uniquely biological activities and potentially medical applications in cancer cells. This paper was initially aimed to study apoptosis of PCL on Hela cells. Thus, 3-(4,
Polygonatum cyrtonema lectin (PCL), a mannose/sialic acid-binding lectin, has been reported to display remarkable anti-proliferative and apoptosis-inducing activities toward a variety of cancer cells; however, the precise molecular mechanisms by which PCL induces cancer cell death are still elusive.
In this study, we investigated the physicochemical properties and composition of monosaccharidex from Polygonatum sibiricum. Simultaneously, we explored the in vivo and in vitro immunomodulatory activity and mechanism of Polygonatum sibiricum polysaccharide (PSP) activity by monitoring changes in