Leathanach 1 ó 28 torthaí
The modern agricultural practices have led to improve the contaminated soils with a variety of heavy metals that have become a major environmental concern. The use of arbuscular mycorrihizal fungi (AMF) is considered a potential tool for the sustainable agriculture especially in contaminated sites.
The interactions of arsenic and phenanthrene on plant uptake and antioxidative response of Pteris vitatta L. were studied hydroponically. The combination of arsenic and phenanthrene decreased arsenic contents in fronds by 30-51%, whereas increased arsenic concentrations 1.2-1.6 times in roots,
Pteris vittata L. from the foothills of Kangra district, Himachal Pradesh, India has been investigated for its potential to combat reactive oxygen species and DNA damaging agents. DPPH radical, superoxide anion radical, ABTS(+.) radical cation decolorization, reducing power, deoxyribose degradation,
Wheat (W) and accumulators (A) were planted in plots (arsenic amended soil and without arsenic) designed with ecotoxicological concern for arsenic safe-grains. For the study sixteen plots of 2 × 2 × 0.5 m (l × b × h) size were prepared. Arsenic (As) in the form of sodium arsenate was applied at 50
A hydroponic experiment was conducted to investigate the effects of indole-3-acetic acid (IAA) on arsenic (As) uptake and antioxidative enzymes in fronds of Pteris cretica var. nervosa (As hyperaccumulator) and Pteris ensiformis (non-hyperaccumulator). Plants were exposed to 2 mg L-1 As(III), As(V)
Arsenic (As) hyperaccumulation trait has been described in a limited number of fern species. The physiological basis of hyperaccumulation remains unclear, especially in non-Pteris species such as Pityrogramma calomelanos. Aiming at a better understanding of As-induced responses, P. calomelanos
Plant species capable of hyper-accumulating heavy metals are of considerable interest for phytoremediation, and differ in their ability to accumulate metals from the environment. This work aims to examine (i) arsenic accumulation in three fern species [Chinese brake fern (Pteris vittata L.), slender
This study measured antioxidative responses of Chinese brake fern (Pteris vittata L.) upon exposure to arsenic (As) of different concentrations. Chinese brake fern was grown in an artificially-contaminated soil containing 0 to 200 mg As kg(-1) (Na2HAsO4) for 12 weeks in a greenhouse. Soil As
In the present work, the ultrasonic-assisted extraction (UAE) of total flavonoids (TF) from Pteris cretica L. was optimized by response surface methodology (RSM) on the basis of a single-factor experiment. The optimized UAE parameters were as follows: Ethanol concentration 56.74%, extraction
The aim of this work is to develop an efficient and economical method for the enrichment of total flavonoids from Pteris ensiformis Burm. extracts. Resin screening, adsorption kinetics, adsorption isotherms and thermodynamics were successively researched prior to the dynamic adsorption and
The sporophyte and gametophyte of Pteris vittata are arsenic hyperaccumulators, however, little is known about the mechanism by which the gametophyte deals with this toxic element. An in vitro system (spores grown in arsenic amended nutrient media) was used to investigate the impact of arsenic on
This experiment examined the effects of sulfate (S) and reduced glutathione (GSH) on arsenic uptake by arsenic hyperaccumulator Pteris vittata after exposing to arsenate (0, 15 or 30 mg As L(-1)) with sulfate (6.4, 12.8 or 25.6 mg S L(-1)) or GSH (0, 0.4 or 0.8 mM) for 2-wk. Total arsenic, S and GSH
Plants adapt to metal stress by modifying their metabolism including the production of secondary metabolites in plant tissues. Such changes may impact the diversity and functions of plant associated microbial communities. Our study aimed to evaluate the influence of metals on the secondary
Pteris vittata L. commonly called 'Brake Fern' possesses some interesting medicinal properties but its chemopreventive potential largely remains unexplored. Therefore, this study was designed to explore the chemopreventive efficacy of P. vittata L. ethyl acetate fraction (PVEA) against