3 torthaí
Disulfide bonds play a crucial role in the stabilization of the amphipathic folding of the diverse families of cysteine-rich antimicrobial peptides. The determination of cysteine pairings in these peptides has largely depended on sequence homology criteria, since the classical methods of disulfide
Pyrularia thionin, isolated from nuts of Pyrularia pubera, is a strongly basic peptide of 47 amino acids. The amino acid sequence and configuration of its four disulfide bonds place this plant peptide, known to be hemolytic, cytotoxic, and neurotoxic, among the thionins. We report and compare
The thionin from Pyrularia pubera (Pp-TH), a 47-residue peptide with four internal disulfide bonds, was efficiently produced by chemical synthesis. Its antimicrobial activity in vitro against several representative pathogens (EC(50)=0.3-3.0 microM) was identical to that of natural Pp-TH. This