Leathanach 1 ó 30 torthaí
Streptomyces scabiei is the predominant causal agent of common scab of potato in North America. The virulence of common scab-causing streptomycetes relies on their capacity to synthesize thaxtomins. In this study, the effects of S. scabiei infection and of thaxtomin A, the main toxin produced by S.
Iron deficiency is a serious agricultural problem, particularly in alkaline soils. Secretion of coumarins by Arabidopsis thaliana roots is induced under iron deficiency. An essential enzyme for the biosynthesis of the major Arabidopsis coumarins, scopoletin and its derivatives, is Feruloyl-CoA
BACKGROUND
Scopoletin and its glucoside scopolin are important secondary metabolites synthesized in plants as a defense mechanism against various environmental stresses. They belong to coumarins, a class of phytochemicals with significant biological activities that is widely used in medical
CONCLUSIONS
Coumarins are derived via the phenylpropanoid pathway in plants. The 2H-1-benzopyran-2-one core structure of coumarins is formed via the ortho-hydroxylation of cinnamates, trans/cis isomerization of the side chain, and lactonization. Ortho-hydroxylation is a key step in coumarin
Iron (Fe) is an essential mineral nutrient and an important factor for the composition of natural plant communities. Low Fe availability in aerated soils with neutral or alkaline pH has led to the evolution of elaborate mechanisms that extract Fe from the soil solution. In Arabidopsis (Arabidopsis
The mode of action and phytotoxic potential of scopoletin, a natural compound belonging to the group of coumarins, has been evaluated in detail. Analysis conducted by light and electron transmission microscopy showed strong cell and tissue abnormalities on treated roots, such as cell wall
The fungus Phakopsora pachyrhizi (Pp) causes Asian soybean rust (SBR) disease which provokes tremendous losses in global soybean production. Pp is mainly controlled with synthetic fungicides to which the fungus swiftly develops fungicide resistance. To substitute or complement synthetic fungicides
Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are
BACKGROUND
Furanocoumarins are molecules with proven therapeutic properties and are produced in only a small number of medicinal plant species such as Ruta graveolens. In vivo, these molecules play a protective role against phytophageous insect attack. Furanocoumarins are members of the
Previously it has been shown that the caffeoyl coenzyme A O-methyltransferase (CCoAOMT) type enzyme PaF6OMT, synthesized by the liverwort Plagiochasma appendiculatum Lehm. & Lindenb., (Aytoniaceae), interacts preferentially with 6-OH flavones. To clarify the biochemistry and evolution of
Coumarins belong to an important class of plant secondary metabolites. Feruloyl-CoA 6'-hydroxylase (F6'H), a 2-oxoglutarate dependent dioxygenase (2OGD), catalyzes a pivotal step in the biosynthesis of a simple coumarin scopoletin. In this study, we determined the 3-dimensional structure of the
Sulfate substituents naturally occurring in biomolecules, such as oligosaccharides and polysaccharides, can play a critical role in major physiological functions in plants and animals. We show that laminarin, a beta-1,3 glucan with elicitor activity in tobacco (Nicotiana tabacum), becomes, after
Root secretion of coumarin-phenolic type compounds has been recently shown to be related to Arabidopsis thaliana tolerance to Fe deficiency at high pH. Previous studies revealed the identity of a few simple coumarins occurring in roots and exudates of Fe-deficient A. thaliana plants, and left open
This study describes the characterisation of a chimeric mutant derived from two arabidopsis glucosyltransferases, 71C1 and 71C3. A chimera, N1C3, was constructed to contain the N-terminal domain of 71C1 and the C-terminal domain of 71C3. The chimera and the wild-type GTs displayed a similar Km
Plant roots nurture a tremendous diversity of microbes via exudation of photosynthetically fixed carbon sources. In turn, probiotic members of the root microbiome promote plant growth and protect the host plant against pathogens and pests. In the Arabidopsis thaliana-Pseudomonas simiae WCS417 model