11 torthaí
Cassava (Manihot esculenta Crantz) is a major world crop, whose storage roots provide food for over 800 million throughout the humid tropics. Despite many advantages as a crop, the development of cassava is seriously constrained by the rapid post-harvest physiological deterioration (PPD) of its
Two to three days after harvesting, cassava (Manihot esculenta Crantz) roots suffer from post-harvest physiological deterioration (PPD) when secondary metabolites are accumulated. Amongst these are hydroxycoumarins (e.g. scopoletin and its glucoside scopolin) which play roles in plant defence and
Scopoletin has been isolated and identified in gari, a cassava food consumed in Nigeria (West Africa). Its levels in gari and cassava flour is not altered by post processing treatments such as sundrying, refrigeration and storage. Scopoletin has also been identified as an active principle in the
BACKGROUND
The use of the root crop cassava (Manihot esculenta Crantz) is constrained by its rapid deterioration after harvesting. Chemical and spectroscopic examination earlier revealed the accumulation of the four hydroxycoumarins esculetin, esculin, scopolin and scopoletin derived from the
A major constraint to the development of cassava (Manihot esculenta Crantz) as a crop to both farmers and processors is its starchy storage roots' rapid post-harvest deterioration, which can render it unpalatable and un-marketable within 24-72 h. An oxidative burst occurs within 15 min of the root
Cassava (Manihot esculenta Crantz) is an important starch-rich crop, but the storage roots only have a short shelf-life due to post-harvest physiological deterioration (PPD), which includes the over-production and polymerisation of hydroxycoumarins. Key aspects of coumarin secondary-metabolite
Cassava (Manihot esculenta) is the most important root crop in the tropics, but rapid postharvest physiological deterioration (PPD) of the root is a major constraint to commercial cassava production. We established a reliable method for image-based PPD symptom quantification and used label-free
BACKGROUND
Under postharvest physiological deterioration cassava root tubers alter the expression of biosynthetic pathways of certain primary and secondary metabolites, as well as the activity of some scavenging enzymes. Therefore, in this study we hypothesized that cassava cultivars differ as to
A phytochemical analysis of cassava (Manihot esculenta Crantz) fresh roots and roots suffering from post-harvest physiological deterioration (PPD) has been carried out. The first isolation and identification of galactosyl diacylglycerides from fresh cassava roots is reported, as well as
The present state of knowledge of the phytochemistry of small molecules isolated from the roots and leaves of cassava, Manihot esculenta Crantz (Euphorbiaceae), is reviewed. Cassava roots are an important source of dietary and industrial carbohydrates, mainly eaten as a source of starch, forming the
Forty-three deaths were recorded among pigs fed boiled cassava meal at a private piggery over a period of two years. There were signs of sudden death in some cases with blood exuding from the external nares, vomiting, muscular weakness and pain or reluctance to move, emaciation, and stunted growth.