Leathanach 1 ó 44 torthaí
The role of nitric oxide (NO) in post-ischemic cerebral infarction has been extensively examined, but few studies have investigated its role on the neurological deficit. In the present study, we investigated the effect of spermine on the temporal evolution of infarct volume, NO production and
Nitric oxide (NO) plays a dual role (neuroprotection and neurotoxicity) in cerebral ischemia. NO promoting strategies may be beneficial shortly after ischemia. Therefore, we have studied the hemodynamic and possible neuroprotective effects of two NO donors, the classical nitrovasodilator sodium
Ischemic reperfusion injuries such as acute renal failure, acute liver failure, stroke, and myocardial infarction are prevalent causes of morbidity and mortality. Kidney ischemic reperfusion injury is the leading cause of acute renal failure and dysfunction of transplanted kidneys. Although
Alterations in polyamine metabolism during and after global or focal cerebral ischemia can produce a multiplicity of effects on brain such as modification in mitochondria calcium buffering capacity, exacerbating glutamate-mediated neurotoxicity, and impairment of the blood-brain barrier. In this
It is expected that mesenchymal stem cells (MSCs) will be a cell source for cardiac reconstruction because of their differentiation potential and ability to supply growth factors. However, poor viability at the transplanted site often hinders the therapeutic potential of MSCs. Here, in a trial
BACKGROUND
Recent research has indicated that mitochondrial adenosine triphosphate-sensitive potassium channels play an important role in cerebral protection, which involves in attenuating the calcium of mitochondria. However, the effect of diazoxide on cerebral ischemia-reperfusion and the role of
OBJECTIVE
Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL) is characterized by ultrastructural abnormalities in small cerebral and systemic vessels. We assessed vasomotor function in systemic small arteries in CADASIL.
METHODS
We studied 10 CADASIL
It is known that mitochondrial ATP-sensitive potassium channels (mitoKATP) play a significant role in protecting cerebral function from ischemia-reperfusion injury, which is related with a decrease in the mitochondrial matrix calcium. However, the effect of mitochondrial calcium uniporter (MCU) on
We previously reported that tissue damage during brain infarction was mainly caused by inactivation of proteins by acrolein. This time, it was tested why brain infarction increases in parallel with aging. A mouse model of photochemically induced thrombosis (PIT) was studied using 2, 6, and 12
BACKGROUND
It is reported that ischemic penumbra is a dynamic process, in which irreversible necrosis in the center of ischemia propagates to the neighboring tissue over time. Recent research has indicated that mitochondrial adenosine triphosphate (ATP)-sensitive potassium channels (mitoKATP) opener
Inhibitors for polyamine oxidizing enzymes, spermine oxidase (SMOX) and N1-acetylpolyamine oxidase (PAOX), were designed and evaluated for their effectiveness in a photochemically induced thrombosis (PIT) mouse model. N1-Nonyl-1,4-diaminobutane (C9-4) and N1-tridecyl-1,4-diaminobutane (C13-4)
We found previously that increased levels of polyamine oxidase (PAO) [acetylpolyamine oxidase (AcPAO) plus spermine oxidase (SMO)], and acrolein (CH(2)CHCHO) are good markers of stroke. We then investigated whether silent brain infarction (SBI) can be detected by measuring acrolein, PAO, or other
Focal cerebral ischaemia was induced in rats by occlusion of the left middle cerebral artery. Two days later, infarct volume was determined by magnetic resonance imaging and the concentrations of the polyamines putrescine (PU), spermine and spermidine by HPLC. In control (occluded) animals, PU
Myocardial infarction could result in high morbidity and mortality and heart diseases of children have becoming prevalent. Functions of spermine administration on cardiomyocytes remain unknown. The present study was designed to investigate the role of spermine pretreatment on myocardial
The polyamines (spermine, putrescine, and spermidine) can have neurotoxic or neuroprotective properties in models of neurodegeneration. However, assessment in a model of hypoxia-ischemia (HI) has not been defined. Furthermore, the putative mechanisms of neuroprotection have not been elucidated.