Leathanach 1 ó 48 torthaí
OBJECTIVE
The goal of this study was to evaluate the antioxidant and antiproliferative activities of 10 traditional medicinal plants, Asclepias curassavica, Ophiorrhiza mungos Linn., Cynodon dactylon (L.) Pers, Costus speciosus (J. Koenig.) Smith Costaceae, Achyranthes aspera L., Amaranthus tristis
Conophylline, a new vinca alkaloid isolated from the plant Ervatamia microphylla induced normal flat morphology in K-ras-NRK and K-ras-NIH cell lines, and lowered the increased uptake of 2-deoxyglucose in K-ras-NRK cells. Conophylline inhibited the growth of K-ras-NRK cells, but this inhibition was
Aspidosperma alkaloids, a subclass of monoterpenoid indole alkaloids rich in the Apocynaceae plants, possess remarkable antitumor activities, but the underlying mechanisms have rarely been reported. In the current project, 11-methoxytabersonine (11-MT), an aspidosperma-type alkaloid isolated from
BACKGROUND
γ-Tocotrienol, a vitamin E isomer possesses pronounced in vitro anticancer activities. However, the in vivo potency has been limited by hardly achievable therapeutic levels owing to inefficient high-dose oral delivery which leads to subsequent metabolic degradation. Jerantinine A, an
BACKGROUND
The genus Tabernaemontana has widespread distribution throughout tropical and subtropical parts of the world, i.e. Africa, Asia and America which has long been used for treatments of different disease conditions including tumours, wounds, syphilis, stomach ache and headache. Some
A new cerebroside, Contortamide (1) together with nine known compounds spegatrine (2), affinisine (3), Nb-methylaffinisine (4), ursolic acid (5), α-amyrin (6), bauerenol acetate (7), lupeol (8), betulinic acid (9) and
The SRB cytotoxicity assay was used to screen extracts and isolated constituents of some traditional medicinal plants from Malaysia and Thailand against two human cancer cell lines, COR L23 lung cancer cell line and MCF7 breast cancer cell line and the non-cancer MCF5 cell line. Five out of the
Two bisindoline alkaloids, contortarine A, 16-epi-pleiomutinine and a reaction product of pleiomutinine, namely N4-chloromethyl-pleiomutinine, were isolated from the roots of Tabernaemontana contorta Stapf. together with five known compounds: pleiomutinine, 1-carbomethoxy-β-carboline, strictosidine
BACKGROUND
Traditional medicine plays a critical role in treatment of chronic debilitating and life threatening conditions and diseases. Cancer is one such condition whose therapeutic intervention is commonly through inexpensive traditional herbal remedies. Increasingly industrialised societies are
Phytochemical investigation of the roots of the African medicinal plant Tabernaemontana elegans led to the isolation of three new (1-3) and two known (4 and 5) bisindole alkaloids of the vobasinyl-iboga type. The structures of 1-3 were assigned by spectroscopic methods, mainly using 1D and 2D NMR
Three known (1-3) and a novel (4) monoterpene indole alkaloids have been isolated from the methanol extract of leaves of Tabernaemontana elegans and their structures were elucidated by a series of spectroscopic experiments, involving NMR, MS, UV, and IR techniques. The isolated monoterpene indole
In the present investigation, the cytotoxic, hydroxyl radical scavenging and topoisomerase inhibition activities of Tabernaemontana divaricata (Apocynaceae) were evaluated. The extracts from leaves of the plant were prepared with different solvents viz. chloroform, methanol, ethyl acetate and
Two new monoterpenoid indole alkaloids, tabervarines A (1) and B (2), along with seven known monoterpenoid indole alkaloids, were isolated from the methanol extract of the twigs and leaves of Tabernaemontana divaricata. The structures including the absolute configurations of the new alkaloids were
Three new monoterpene indole alkaloids, 3α-hydroxymethyl-ibogamine (1), 3α-acetatemethoxyl-ibogamine (2), 16α-hydroxyl-ibogamine (3) together with six known alkaloids were isolated from the branches and leaves of Tabernaemontana divaricata (Apocynaceae). The structures of these alkaloids were
Four new monoterpenoid bisindole alkaloids, flabellipparicine (1), 19,20-dihydrovobparicine (2), 10'-demethoxy-19,20-dihydrovobatensine D (3), and 3'-(2-oxopropyl)ervahanine A (4), and 10 known monoterpenoid indole alkaloids were isolated from the stems of Tabernaemontana divaricata. All structures