Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)

Substituted imidazolyl-alkyl-piperazine and -diazepine derivatives

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Jean Pascal
Chi-Ho Lee
Brian Alps
Henri Pinhas
Roger Whiting
Calum Macfarlane
Serge Beranger
Robert Dow

Ključne riječi

Informacije o patentu

Broj patenta5043447
Spremljeno10/20/1988
Datum patenta08/26/1991

Sažetak

Substituted imidazolyl-alkyl-piperazine and diazepine derivatives of Formula A: ##STR1## wherein: R.sup.1 is aryl, lower alkyl, cycloalkyl or hydrogen;R.sup.2 is aryl, lower alkyl or hydrogen;R.sup.3 is lower alkyl, hydroxy, or hydrogen;R.sup.4 is aryl or hydrogen;R.sup.5 is aryl or hydrogen;m is two or three;n is zero, one or two,provided that when R.sup.3 is hydroxy, n is one or two; andq is zero, one, two, or three;and the pharmaceutically acceptable salts thereof, are useful for treating mammals having any of a variety of disease states including:diseases treated by direct neuronal protection, such as ischemia including focal and global ischemia, spinal injuries, head trauma, and neurological diseases such as Alzheimer's and Huntington's chorea;diseases treated by inhibition of sodium ion, such as uremic and hyponatremic encephalopathy; anddiseases treated with calcium channel antagonists, including:diseases treated by inhibiting cerebrovascular vasospasm and by cerebrovascular vasodilation, such as migraine, stroke, vasospasm due to subarachnoid hemorrhage, epilepsy or epileptic psychotic symptoms, and cerebrovascular ischemia induced by cocaine abuse; andcardiovascular diseases, such as hypertension, angina, stable and unstable angina, Prinzmetal angina, arrhythmia, thrombosis, embolism, and congestive heart failure such as chronic or acute cardiac failure; andischemia of lower legs due to peripheral vascular disease, e.g., intermittent claudication;spasms of smooth muscle: such as the ureter, the bladder, uterine cramps, diuresis, and irritable bowel syndrome; anduses during surgery: such as bypass grafts, angiography, angioplasty, organ preservation during transplant, hypertensive crisis, or post operative hypertension.

Zahtjevi

What is claimed is:

1. A method of making a compound having the structure represented by the formula: ##STR15## wherein: R.sup.1 is aryl, lower alkyl, cycloalkyl or hydrogen;

R.sup.2 is aryl, lower alkyl or hydrogen;

R.sup.3 is lower alkyl or hydrogen;

R.sup.4 is aryl or hydrogen;

R.sup.5 is aryl or hydrogen;

m is two or three; and

q is zero, one, two, or three;

wherein aryl is selected from the group: phenyl and optionally mono-, di-, and tri-substituted phenyl, wherein the optional substituents are lower alkyl, lower alkoxy, hydroxy, trifuloromethyl or halo; and

wherein cycloalkyl comprises a saturated carbocyclic hydrocarbyl ring having from 3 to 7 ring carbon atoms, one of which has a single available valence;

said method comprising reacting a substituted amidine of the formula: ##STR16## with a substituted dione of the formula: ##STR17## wherein a is an integer from zero to four; and a substituted-4-piperazine or a substituted-4-diazepine of the formula: ##STR18## in the presence of a metal halide.

2. The method of claim 1 wherein said metal halide is lithium bromide, lithium chloride or lithium iodide.

3. The method of claim 2 wherein said metal halide is lithium bromide.

4. The method of claim 1 wherein said reaction is conducted in a solvent in which said starting materials are soluble, but in which said final product is insoluble.

5. The method of claim 1 wherein said amidine and said substituted dione are first refluxed together, and allowed to cool before addition of said substituted-4-piperazine or a substituted-4-diazepine, followed by addition of a slight molar excess of a base and a slight molar excess of said metal halide.

6. The method of claim 1 wherein R.sup.2 is lower alkyl and R.sup.3 is lower alkyl having one carbon atom less than R.sup.2, or R.sup.3 is hydrogen when R.sup.2 is methyl.

7. A product made by the process of claim 1, containing a detectable amount of a metal halide used or produced in the process of its manufacture.

8. 1-Diphenylmethyl-4-[(2-(4-methyl-phenyl)-5-methyl-1H-imidazol-4-yl) methyl]piperazine made by the process of claim 1, containing a detectable amount of a metal halide used or produced in the process of its manufacture.

9. The product of claim 8 wherein said metal halide is lithium bromide or lithium hydroxide.

10. The product of claim 9 wherein said metal halide is lithium bromide.

11. The method of claim 10 wherein said substituted amidine is 4-methylbenzamidine, said substituted dione is butanedione, and said substituted piperazine is N-(diphenylmethyl)piperazine.

Opis

EXAMPLES

The following examples and preparations are given to enable those skilled in the art to more clearly understand and to practice the present invention. They should not be considered as a limitation on the scope of the invention, but merely as being illustrative and representative thereof.

PREPARATION 1

Preparation of Compound of Formula 1

A solution of 1 mole (117.5 g) of tolunitrile in 500 ml absolute ethanol (99%) was saturated with dry HCl gas then kept under stirring at room temperature overnight. A first crop of crystals was collected by filtration then mother liquors were concentrated and placed in a freezer (-18.degree. C.) for 16 hours. A second crop was obtained, giving an overall yield of 80%. Without further purification, the crude product (160 g) was put in 200 ml NH.sub.3 -saturated methanol, portionwise with stirring. After complete dissolution the reaction medium was left at room temperature overnight then 1/3 of the methanol was removed under reduced pressure. The resulting solution was diluted with 200 ml of isopropyl- acetate and left to crystallize at room temperature for one day. The desired toluamidine hydrochloride was recovered by filtration, dried overnight at 50.degree. C. and used without further purification in the next step (77 g of a white powder, 90% yield).

77 g of the above benzamidine hydrochloride were dissolved in 200 ml of water then one equivalent of butanedione was added. The pH was adjusted to 7 with 2N sodium hydroxide and the reaction medium was left for two hours at 0.degree. C. The white solid formed was filtered off and washed with acetone. The crude product (93 g) was dissolved in 500 ml of 10N HCl then the solution was heated to 100.degree. C. with stirring for 6 hours. After cooling, the white solid formed was recovered by filtration and recrystallized from water to give 65 g of 2-(4-methylphenyl)-5-methyl-4-hydroxymethyl-1H-imidazole, melting point, 167.degree.-169.degree. C.

This 4-hydroxymethyl-1H-imidazole was then reacted with a thionyl halide using the procedures set forth above to form the 2-(4-methylphenyl)-4-chloro-methyl-5-methyl-1H-imidazole hydrochloride used in Example 1.

EXAMPLE 1

1-Diphenylmethyl-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]pi perazine and Derivatives Thereof

1A. Formula A Where R.sup.1 is 4-Methylphenyl; R.sup.2 is Methyl; R.sup.3 is Hydrogen; R.sup.4 and R.sup.5 are Phenyl; m is 2; n is 0; and q is 0

50 Grams (0.2 mol) of 2-(4-methylphenyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride dissolved in 200 ml of a mixture of ethanol:water 6:4 were added dropwise to a refluxing solution of 55 grams (0.2 mol) of N-(diphenylmethyl)piperazine and 24 grams (0.6 mol) sodium hydroxide in 200 ml of a mixture of ethanol:water 6:4. After 2 to 3 hours 1-diphenylmethyl-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine precipitated from the reaction mixture. After having left the crystals standing at room temperature, they were removed by filtration and recrystallized from methanol to give the free base which melted at 220.degree.-222.degree. C.

The free base was converted to its acid addition salt by the process taught in Example 6.

1B. Formula A Varying R.sup.1 and R.sup.2

Similarly, following the procedure of Part A above, but replacing 2-(4-methylphenyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride with:

2-phenyl-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

2-methyl-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

2-t-butyl-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

2-(3-methylphenyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

2-(2-methylphenyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

2-(4-t-butylphenyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

2-(3-t-butylphenyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

2-(2-t-butylphenyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

2-(4-chlorophenyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

2-(3-chlorophenyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

2-(2-chlorophenyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

2-(4-methoxyphenyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

2-(3-methoxyphenyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

2-(2-methoxyphenyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

2-(2-methylphenyl)-4-chloromethyl-5-ethyl-1H-imidazole hydrochloride;

2-(4-methylphenyl)-4-chloromethyl-5-t-butyl-1H-imidazole hydrochloride;

2-(4-methylphenyl)-4-chloromethyl-1H-imidazole hydrochloride;

2-(3,4-dimethoxyphenyl)-4-bromomethyl-5-methyl-1H-imidazole hydrochloride;

2,5-di-(4-methylphenyl)-4-chloromethyl-1H-imidazole hydrochloride;

2-(cyclopropyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride;

4-chloromethyl-5-methyl-1H-imidazole hydrochloride; and

4-chloromethyl-5-(3-methoxyphenyl)-1H-imidazole hydrochloride,

there is obtained:

1-diphenylmethyl-4-[(2-phenyl-5-methyl-1H-imidazol-4-yl)methyl]piperazine, the trihydrochloride salt of which has a melting point of 214.degree. C.;

1-diphenylmethyl-4-[(2,5-dimethyl-1H-imidazol-4-yl)methyl]piperazine, the trihydrochloride salt of which has a melting point of about 225.degree. C.;

1-diphenylmethyl-4-[(2-t-butyl-5-methyl-1H-imidazol-4-yl)methyl]piperazine;

1-diphenylmethyl-4-[(2-(3-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]pi perazine;

1-diphenylmethyl-4-[(2-(2-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]pi perazine;

1-diphenylmethyl-4-[(2-(4-t-butylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine;

1-diphenylmethyl-4-[(2-(3-t-butylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine;

1-diphenylmethyl-4-[(2-(2-t-butylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine;

1-diphenylmethyl-4-[(2-(4-chlorophenyl)-5-methyl-1H-imidazol-4-yl)methyl]pi perazine, the trihydrochloride salt of which has a melting point of 216.degree. C.;

1-diphenylmethyl-4-[(2-(3-chlorophenyl)-5-methyl-1H-imidazol-4-yl)methyl]pi perazine, the trihydrochloride salt of which has a melting point of about 215.degree. C.;

1-diphenylmethyl-4-[(2-(2-chlorophenyl)-5-methyl-1H-imidazol-4-yl)methyl]pi perazine;

1-diphenylmethyl-4-[(2-(4-methoxyphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine, the trihydrochloride salt of which has a melting point of about 225.degree. C.;

1-diphenylmethyl-4-[(2-(3-methoxyphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine;

1-diphenylmethyl-4-[(2-(2-methoxyphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine;

1-diphenylmethyl-4-[(2-(2-methylphenyl)-5-ethyl-1H-imidazol-4-yl)methyl]pip erazine;

1-diphenylmethyl-4-[(2-(4-methylphenyl)-5-t-butyl-1H-imidazol-4-yl)methyl]p iperazine;

1-diphenylmethyl-4-[(2-(4-methylphenyl)-1H-imidazol-4-yl)methyl]piperazine;

1-diphenylmethyl-4-[(2-(3,4-dimethoxyphenyl)-5-methyl-1H-imidazol-4-yl)meth yl]piperazine, the trihydrochloride salt of which has a melting point of 230.degree. C.;

1-diphenylmethyl-4-[(2,5-di-(4-methylphenyl)-1H-imidazol-4-yl)methyl]pipera zine;

1-diphenylmethyl-4-[(2-(cyclopropyl)-5-methyl-1H-imidazol-4-yl)methyl]piper azine;

1-diphenylmethyl-4-[(5-methyl-1H-imidazol-4-yl)methyl]piperazine; and

1-diphenylmethyl-4-[(5-(3-methoxyphenyl)-1H-imidazol-4-yl)methyl]piperazine .

1C. Formula A Varying q, R.sup.4 and R.sup.5

Similarly, following the procedure of Part A above, but replacing N-(diphenylmethyl)piperazine with:

N-[di-(2-methylphenyl)methyl]piperazine;

N-[di-(3-methylphenyl)methyl]piperazine;

N-[di-(4-methylphenyl)methyl]piperazine;

N-[di-(2-t-butylphenyl)methyl]piperazine;

N-[di-(3-t-butylphenyl)methyl]piperazine;

N-[di-(4-t-butylphenyl)methyl]piperazine;

N-[di-(2-methoxyphenyl)methyl]piperazine;

N-[di-(3-methoxyphenyl)methyl]piperazine;

N-[di-(4-methoxyphenyl)methyl]piperazine;

N-[di-(2-chlorophenyl)methyl]piperazine;

N-[di-(3-chlorophenyl)methyl]piperazine;

N-[di-(4-chlorophenyl)methyl]piperazine;

N-[di-(4-fluorophenyl)methyl]piperazine;

N-benzylpiperazine;

N-[1-(4-chlorophenyl)-1-(phenyl)methyl]piperazine;

N-(2,2-diphenylethyl)piperazine;

N-[3-(phenyl)-3-(4-methoxyphenyl)propyl]piperazine; and

N-(4,4-diphenylbutyl)piperazine,

there is obtained:

1-[di-(2-methylphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4 -yl)methyl]piperazine;

1-[di-(3-methylphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4 -yl)methyl]piperazine;

1-[di-(4-methylphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4 -yl)methyl]piperazine;

1-[di-(2-t-butylphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol- 4-yl)methyl]piperazine;

1-[di-(3-t-butylphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol- 4-yl)methyl]piperazine;

1-[di-(4-t-butylphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol- 4-yl)methyl]piperazine;

1-[di-(2-methoxyphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol- 4-yl)methyl]piperazine;

1-[di-(3-methoxyphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol- 4-yl)methyl]piperazine;

1-[di-(4-methoxyphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol- 4-yl)methyl]piperazine;

1-[di-(2-chlorophenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4 -yl)methyl]piperazine;

1-[di-(3-chlorophenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4 -yl)methyl]piperazine;

1-[di-(4-chlorophenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4 -yl)methyl]piperazine, the trihydrochloride salt of which has a melting point of about 225.degree. C.;

1-[di-(4-fluorophenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4 -yl)methyl]piperazine, the trihydrochloride salt of which has a melting point of about 210.degree. C.;

1-benzyl-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]piperazine ;

1-[1-(4-chlorophenyl)-1-(phenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H- imidazol-4-yl)methyl]piperazine;

1-(2,2-diphenylethyl)-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4-yl)meth yl]piperazine;

1-[3-(phenyl)-3-(4-methyoxyphenyl)propyl]-4-[(2-(4-methylphenyl)-5-methyl-1 H-imidazol-4-yl)methyl]piperazine; and

1-(4,4-diphenylbutyl)-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4-yl)meth yl]piperazine.

1D. Formula A Varying R.sup.1 ; R.sup.2 ; R.sup.4 ; R.sup.5 and q

Similarly, by following the procedures of Parts B and C above, other compounds of Formula A where R.sup.3 is hydrogen, m is 2, and n is 0 are obtained, such as:

1-diphenylmethyl-4-[(2-n-butyl-5-methyl-1H-imidazol-4-yl)methyl]piperazine, the trihydrochloride salt of which has a melting point of about 205.degree. C.;

1-diphenylmethyl-4-[(2-(3-trifluoromethylphenyl)-5-methyl-1H-imidazol-4-yl) methyl]piperazine, the trihydrochloride salt of which has a melting point of about 210.degree. C.;

1-diphenylmethyl-4-[(2-phenyl-1H-imidazol-4-yl)-methyl]piperazine, the fumarate salt of which has a melting point of 170.degree. C.;

1-diphenylmethyl-4-[(5-methyl-1H-imidazol-4-yl)methyl]piperazine, the trihydrochloride salt of which has a melting point of about 205.degree. C.;

1-methyl-4-[(2-phenyl-5-methyl-1H-imidazol-4-yl)-methyl]piperazine, the trihydrochloride salt of which has a melting point of about 215.degree. C.;

1-di-(4-chlorophenyl)methyl-4-[(2-phenyl-5-methyl-1H-imidazol-4-yl)methyl]p iperazine, the trihydrochloride salt of which has a melting point of 220.degree. C.;

1-[4,4-di-(4-fluorophenyl)butyl]-4-[(2-phenyl-5-methyl-1H-imidazol-4-yl)met hyl]piperazine, the trihydrochloride salt of which has a melting point of 198.degree. C.; and

1-benzyl-4-[(2-phenyl-5-methyl-1H-imidazol-4-yl)methyl]piperazine, the trihydrochloride salt of which has a melting point of 238.degree. C.

1E. Formula A Varying m

Similarly, by following the procedures of Parts A-D above, but replacing the piperazines there-used with the corresponding diazepines, the compounds of Formula A wherein m is 3 are obtained.

For example, substituting 2-phenyl-4-chloromethyl-5-methyl-1H-imidazole hydrochloride for 2-(4-methylphenyl)-4-chloromethyl-5-methyl-1H-imidazole hydrochloride, and by substituting diphenylmethyl-4-diazepine for diphenylmethyl-4-piperazine, there is obtained 1-diphenylmethyl-4-[(2-phenyl-5-methyl-1H-imidazol-4-yl)methyl]diazepine, the trihydrochloride salt of which has a melting point of about 205.degree. C.

EXAMPLE 2

1-Diphenylmethyl-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethyl]piperazine and Derivatives Thereof

2A. Formula 5 Where R.sup.1 is Phenyl; and R.sup.2 is Methyl

32 Grams (0.59 mol) of potassium borohydride were added portionwise to a solution of 30 g (0.15 mol) of 2-phenyl-4-acetyl-5-methylimidazole in 1500 ml of MeOH. After stirring overnight, a solid material was removed by filtration, then the solvent was evaporated under reduced pressure to give 27 g of 2-phenyl-4-(1-hydroxyethyl)-5-methylimidazole. The crude compound thus isolated was used without further purification.

2B. Formula 6 Where R.sup.1 is Phenyl; R.sup.2 is Methyl; and X is Chloro

27 Grams (0.13 mol) of 2-phenyl-4-(1-hydroxyethyl)-5-methylimidazole were dissolved in 700 ml of chloroform with 44 ml (0.6 mol) of thionyl chloride and refluxed for 5 hours. After cooling, the mixture was evaporated, the residue triturated in acetone, thereby giving, in approximately stoichiometric yield, 2-phenyl-4-(1-chloroethyl)-5-methylimidazole hydrochloride, m.p. 190.degree. C.

2C. Formula 6 Varying R.sup.1, R.sup.2, and the Length of Alkyl at Position 4 of the Imidazole

Similarly, following the procedures of Part A and B above, but replacing 2-phenyl-4-acetyl-5-methylimidazole with:

2-(phenyl)-4-(2-methylpropanoyl)-5-methylimidazole;

2-(3-methylphenyl)-4-acetyl-5-methylimidazole;

2-(2-methylphenyl)-4-acetyl-5-methylimidazole;

2-(4-t-butylphenyl)-4-acetyl-5-methylimidazole;

2-(3-t-butylphenyl)-4-acetyl-5-methylimidazole;

2-(2-t-butylphenyl)-4-acetyl-5-methylimidazole;

2-(4-chlorophenyl)-4-acetyl-5-methylimidazole;

2-(3-chlorophenyl)-4-acetyl-5-methylimidazole;

2-(2-chlorophenyl)-4-acetyl-5-methylimidazole;

2-(4-methoxyphenyl)-4-acetyl-5-methylimidazole;

2-(3-methoxyphenyl)-4-acetyl-5-methylimidazole;

2-(2-methoxyphenyl)-4-acetyl-5-methylimidazole;

2-(2-methylphenyl)-4-acetyl-5-ethylimidazole;

2-(cyclopropyl)-4-acetyl-5-phenylimidazole;

2-(4-methylphenyl)-4-acetyl-5-t-butylimidazole; and

2-(4-methylphenyl)-4-acetylimidazole,

there is obtained:

2-(phenyl)-4-(1-chloro-2-methylpropyl)-5-methylimidazole hydrochloride;

2-(3-methylphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(2-methylphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(4-t-butylphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(3-t-butylphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(2-t-butylphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(4-chlorophenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(3-chlorophenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(2-chlorophenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(4-methoxyphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(3-methoxyphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(2-methoxyphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(2-methylphenyl)-4-(1-chloroethyl)-5-ethylimidazole hydrochloride;

2-(cyclopropyl)-4-(1-chloroethyl)-5-phenylimidazole hydrochloride;

2-(4-methylphenyl)-4-(1-chloroethyl)-5-t-butylimidazole hydrochloride; and

2-(4-methylphenyl)-4-(1-chloroethyl)-imidazole hydrochloride.

2D. Formula A Where R.sup.1 is Phenyl; R.sup.2 is Methyl; R.sup.3 is Methyl; R.sup.4 and R.sup.5 are Phenyl; m is 2; n is 0; and q is 0

14 Grams (0.052 mol) of N-(diphenylmethyl)piperazine and 6 grams (0.15 mol) of sodium hydroxide were dissolved in 180 ml of a mixture of ethanol:water 60:40. The mixture was heated to reflux, then 2-phenyl-4-(1-chloroethyl)-5-methylimidazole hydrochloride in 180 milliliters of ethanol:water 60:40 were added dropwise. After 4 to 5 hours under reflux, the reaction mixture was allowed to cool to room temperature. The oil that separated was washed twice with water, then dissolved in ether and hydrochloric acid was added. The precipitate was recrystallized from ethanol to give 1-diphenylmethyl-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethyl]piperazine trihydrochloride (55% yield), which melted at 215.degree. C.

2E. Formula A Where R.sup.3 is Methyl; R.sup.4 and R.sup.5 are Phenyl; m is 2; n is 0; q is 0; and Varying R.sup.1 and R.sup.2

Similarly, following the procedure of Part D above, but replacing 2-phenyl-4-(1-chloroethyl)-5-methylimidazole hydrochloride with:

2-(phenyl)-4-(1-chloro-2-methylpropyl)-5-methylimidazole hydrochloride;

2-(phenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-methyl-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-t-butyl-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(3-methylphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(2-methylphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(4-t-butylphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(3-t-butylphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(2-t-butylphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(4-chlorophenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(3-chlorophenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(2-chlorophenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(4-methoxyphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(3-methoxyphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(2-methoxyphenyl)-4-(1-chloroethyl)-5-methylimidazole hydrochloride;

2-(2-methylphenyl)-4-(1-chloroethyl)-5-ethylimidazole hydrochloride;

2-(cyclopropyl)-4-(1-chloroethyl)-5-phenylimidazole hydrochloride;

2-(4-methylphenyl)-4-(1-chloroethyl)-5-t-butylimidazole hydrochloride; and

2-(4-methylphenyl)-4-(1-chloroethyl)-imidazole hydrochloride,

there is obtained:

1-diphenylmethyl-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-methyl-5-methyl-1H-imidazol-4-yl)ethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-t-butyl-5-methyl-1H-imidazol-4-yl)ethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(3-methylphenyl)-5-methyl-1H-imidazol-4-yl)ethyl]p iperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(2-methylphenyl)-5-methyl-1H-imidazol-4-yl)ethyl]p iperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(4-t-butylphenyl)-5-methyl-1H-imidazol-4-yl)ethyl] piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(3-t-butylphenyl)-5-methyl-1H-imidazol-4-yl)ethyl] piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(2-t-butylphenyl)-5-methyl-1H-imidazol-4-yl)ethyl] piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(4-chlorophenyl)-5-methyl-1H-imidazol-4-yl)ethyl]p iperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(3-chlorophenyl)-5-methyl-1H-imidazol-4-yl)ethyl]p iperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(2-chlorophenyl)-5-methyl-1H-imidazol-4-yl)ethyl]p iperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(4-methoxyphenyl)-5-methyl-1H-imidazol-4-yl)ethyl] piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(3-methoxyphenyl)-5-methyl-1H-imidazol-4-yl)ethyl] piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(2-methoxyphenyl)-5-methyl-1H-imidazol-4-yl)ethyl] piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(2-methylphenyl)-5-ethyl-1H-imidazol-4-yl)ethyl]pi perazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(2-cyclopropyl)-5-phenyl-1H-imidazol-4-yl)ethyl]pi perazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(4-methylphenyl)-5-t-butyl-1H-imidazol-4-yl)ethyl] piperazine trihydrochloride; and

1-diphenylmethyl-4-[1-(2-(4-methylphenyl)-1H-imidazol-4-yl)ethyl]piperazine trihydrochloride.

2F. Formula A Where R.sup.1 is Phenyl; R.sup.2 is Methyl; R.sup.3 is Methyl; m is 2; n is 0; and Varying q, R.sup.4 and R.sup.5

Similarly, following the procedure of Part D above, but replacing N-(diphenylmethyl)piperazine with:

N-[di-(2-methylphenyl)methyl]piperazine;

N-[di-(3-methylphenyl)methyl]piperazine;

N-[di-(4-methylphenyl)methyl]piperazine;

N-[di-(2-t-butylphenyl)methyl]piperazine;

N-[di-(3-t-butylphenyl)methyl]piperazine;

N-[di-(4-t-butylphenyl)methyl]piperazine;

N-[di-(2-methoxyphenyl)methyl]piperazine;

N-[di-(3-methoxyphenyl)methyl]piperazine;

N-[di-(4-methoxyphenyl)methyl]piperazine;

N-[di-(2-chlorophenyl)methyl]piperazine;

N-[di-(3-chlorophenyl)methyl]piperazine;

N-[di-(4-chlorophenyl)methyl]piperazine;

N-[di-(4-fluorophenyl)methyl]piperazine;

N-benzylpiperazine;

N-[1-(4-chlorophenyl)-1-(phenyl)methyl]piperazine;

N-(2,2-diphenylethyl)piperazine;

N-[3-(phenyl)-3-(4-methoxyphenyl)propyl]piperazine; and

N-(4,4-diphenylbutyl)piperazine,

there is obtained:

1-[di-(2-methylphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethy l]piperazine trihydrochloride;

1-[di-(3-methylphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethy l]piperazine trihydrochloride;

1-[di-(4-methylphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethy l]piperazine trihydrochloride;

1-[di-(2-t-butylphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)eth yl]piperazine trihydrochloride;

1-[di-(3-t-butylphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)eth yl]piperazine trihydrochloride;

1-[di-(4-t-butylphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)eth yl]piperazine trihydrochloride;

1-[di-(2-methoxyphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)eth yl]piperazine trihydrochloride;

1-[di-(3-methoxyphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)eth yl]piperazine trihydrochloride;

1-[di-(4-methoxyphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)eth yl]piperazine trihydrochloride;

1-[di-(2-chlorophenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethy l]piperazine trihydrochloride;

1-[di-(3-chlorophenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethy l]piperazine trihydrochloride;

1-[di-(4-chlorophenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethy l]piperazine trihydrochloride;

1-[di-(4-fluorophenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethy l]piperazine trihydrochloride;

1-benzyl-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethyl]piperazine trihydrochloride;

1-[(4-chlorophenyl)-1-(phenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4 -yl)ethyl]piperazine trihydrochloride;

1-(2,2-diphenylethyl)-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethyl]pipera zine trihydrochloride;

1-[3-(phenyl)-3-(4-methoxyphenyl)propyl]-4-[1-(2-phenyl-5-methyl-1H-imidazo l-4-yl)ethyl]piperazine trihydrochloride; and

1-(4,4-diphenylbutyl)-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethyl]pipera zine trihydrochloride.

2G. Formula A Where R.sup.3 is Methyl; m is 2; n is 0; and Varying R.sup.1 ; R.sup.2 ; R.sup.4 ; R.sup.5 and q

Similarly, by following the procedures of Parts E and F above, other compounds of Formula A where R.sup.3 is methyl, m is 2, and n is 0 are obtained, such as:

1-benzyl-4-[1-(2-methyl-5-ethyl-1H-imidazol-4-yl)ethyl]piperazine trihydrochloride;

1-[(4-chlorophenyl)-1-(phenyl)methyl]-4-[1-(2-phenyl-5-(4-methylphenyl)-1H- imidazol-4-yl)ethyl]piperazine trihydrochloride;

1-(2,2-diphenylethyl)-4-[1-(2-cyclohexyl-5-phenyl-1H-imidazol-4-yl)ethyl]pi perazine trihydrochloride;

1-[3-(phenyl)-3-(4-methoxyphenyl)propyl]-4-[1-(2-(3-methoxyphenyl)-5-propyl -1H-imidazol-4-yl)ethyl]piperazine trihydrochloride; and

1-(4,4-diphenylbutyl)-4-[1-(5-(2-methylphenyl)-1H-imidazol-4-yl)ethyl]piper azine trihydrochloride.

2H. Formula A Where R.sup.3 is Lower Alkyl Other Than Methyl

Similarly, following the procedure of Part D above, but replacing 2-phenyl-4-(1-chloroethyl)-5-methylimidazole hydrochloride with:

2-phenyl-4-(1-chloropropyl)-5-methylimidazole hydrochloride; and

2-phenyl-4-(1-chlorobutyl)-5-methylimidazole hydrochloride,

there is obtained:

1-diphenylmethyl-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)propyl]piperazine trihydrochloride; and

1-diphenylmethyl-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)butyl]piperazine trihydrochloride.

2I. Formula A Varying m

Similarly, by following the procedures of Parts A-H above, but replacing the piperazines there-used with the corresponding diazepines, the compounds of Formula A wherein m is 3 are obtained.

EXAMPLE 3

1-Diphenylmethyl-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-hydroxyethyl]p iperazine trihydrochloride and Derivatives Thereof

3A. Formula 9 Where R.sup.1 is Phenyl; R.sup.2 is Methyl; R.sup.4 and R.sup.5 are Phenyl; m is 2; and q is 0

10 Grams (0.036 mol) of 2-phenyl-4-(2-bromoethanoyl)-5-methyl-1H-imidazole and 8.5 grams (0.034 mol) of N-(diphenylmethyl)piperazine and 5 grams (0.036 mol) of potassium carbonate were added to 300 ml of ethanol. The mixture was refluxed under stirring overnight. After cooling, the salts were removed by filtration and the solvent was removed under reduced pressure. The residue was extracted by dichloromethane and washed twice with water. The organic layer was dried over sodium sulfate and evaporated. Trituration of the residue with ethanol gave a white precipitate, 1-diphenylmethyl-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-oxoethyl]pipe razine, which was used in the next reaction step without further purification.

3B. TriHCl Salt of Formula A Where R.sup.1 is Phenyl; R.sup.2 is Methyl; R.sup.3 is Hydroxy; R.sup.4 and R.sup.5 are Phenyl; m is 2; n is 1; and q is 0

6 Grams of 1-diphenylmethyl-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-oxoethyl]pipe razine was dissolved in 100 ml of methanol. The reaction was cooled to 5.degree. C. and then 2 grams (0.05 mol) of sodium borohydride was added portionwise. After stirring for 2 hours at room temperature, the mixture was evaporated off. The residue was extracted with dichloromethane and washed with water. Then the organic layer was dried over sodium sulphate and the solvent removed under reduced pressure. The crude material was then dissolved in diethyloxide and hydrochloric acid was added. The white precipitate was then removed by filtration and dried to give 1-diphenylmethyl-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-hydroxyethyl] piperazine trihydrochloride, which melted at 200.degree. C.

3C. TriHCl Salt of Formula A Where R.sup.3 is Hydroxy; R.sup.4 and R.sup.5 are Phenyl; m is 2; n is 1; q is 0; and Varying R.sup.1 and R.sup.2

Similarly, following the procedures of Parts A and B above, but replacing 2-phenyl-4-(2-bromo-ethanoyl)-5-methyl-1H-imidazole with:

2-(3-methylphenyl)-4-(2-bromoethanoyl)-5-methyl-1H-imidazole;

2-(2-methylphenyl)-4-(2-bromoethanoyl)-5-methyl-1H-imidazole;

2-(4-t-butylphenyl)-4-(2-bromoethanoyl)-5-methyl-1H-imidazole;

2-(3-t-butylphenyl)-4-(2-bromoethanoyl)-5-methyl-1H-imidazole;

2-(2-t-butylphenyl)-4-(2-bromoethanoyl)-5-methyl-1H-imidazole;

2-(4-chlorophenyl)-4-(2-bromoethanoyl)-5-methyl-1H-imidazole;

2-(3-chlorophenyl)-4-(2-bromoethanoyl)-5-methyl-1H-imidazole;

2-(2-chlorophenyl)-4-(2-bromoethanoyl)-5-methyl-1H-imidazole;

2-(4-methoxyphenyl)-4-(2-bromoethanoyl)-5-methyl-1H-imidazole;

2-(3-methoxyphenyl)-4-(2-bromoethanoyl)-5-methyl-1H-imidazole;

2-(2-methoxyphenyl)-4-(2-bromoethanoyl)-5-methyl-1H-imidazole;

2-(2-methylphenyl)-4-(2-bromoethanoyl)-5-ethyl-1H-imidazole;

2-(cyclohexyl)-4-(2-bromoethanoyl)-5-ethyl-1H-imidazole;

2-(4-methylphenyl)-4-(2-bromoethanoyl)-5-t-butyl-1H-imidazole; and

2-(4-methylphenyl)-4-(2-bromoethanoyl)-1H-imidazole,

there is obtained:

1-diphenylmethyl-4-[2-(2-(3-methylphenyl)-5-methyl-1H-imidazol-4-yl)-2-hydr oxyethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[2-(2-(2-methylphenyl)-5-methyl-1H-imidazol-4-yl)-2-hydr oxyethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[2-(2-(4-t-butylphenyl)-5-methyl-1H-imidazol-4-yl)-2-hyd roxyethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[2-(2-(3-t-butylphenyl)-5-methyl-1H-imidazol-4-yl)-2-hyd roxyethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[2-(2-(2-t-butylphenyl)-5-methyl-1H-imidazol-4-yl)-2-hyd roxyethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[2-(2-(4-chlorophenyl)-5-methyl-1H-imidazol-4-yl)-2-hydr oxyethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[2-(2-(3-chlorophenyl)-5-methyl-1H-imidazol-4-yl)-2-hydr oxyethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[2-(2-(2-chlorophenyl)-5-methyl-1H-imidazol-4-yl)-2-hydr oxyethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[2-(2-(4-methoxyphenyl)-5-methyl-1H-imidazol-4-yl)-2-hyd roxyethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[2-(2-(3-methoxyphenyl)-5-methyl-1H-imidazol-4-yl)-2-hyd roxyethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[2-(2-(2-methoxyphenyl)-5-methyl-1H-imidazol-4-yl)-2-hyd roxyethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[2-(2-(2-methylphenyl)-5-ethyl-1H-imidazol-4-yl)-2-hydro xyethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[2-(2-cyclohexyl-5-ethyl-1H-imidazol-4-yl)-2-hydroxyethy l]piperazine trihydrochloride;

1-diphenylmethyl-4-[2-(2-(4-methylphenyl)-5-t-butyl-1H-imidazol-4-yl)-2-hyd roxyethyl]piperazine trihydrochloride; and

1-diphenylmethyl-4-[2-(2-(4-methylphenyl)-1H-imidazol-4-yl)-2-hydroxyethyl] piperazine trihydrochloride.

3D. TriHCl Salt of Formula A Where R.sup.1 is Phenyl; R.sup.2 is Methyl; R.sup.3 is Hydroxy; m is 2; n is 1; q is 0; and Varying R.sup.4 and R.sup.5

Similarly, following the procedures of Parts A and B above, but replacing N-(diphenylmethyl)piperazine with:

N-[di-(2-methylphenyl)methyl]piperazine;

N-[di-(3-methylphenyl)methyl]piperazine;

N-[di-(4-methylphenyl)methyl]piperazine;

N-[di-(2-t-butylphenyl)methyl]piperazine;

N-[di-(3-t-butylphenyl)methyl]piperazine;

N-[di-(4-t-butylphenyl)methyl]piperazine;

N-[di-(2-methoxyphenyl)methyl]piperazine;

N-[di-(3-methoxyphenyl)methyl]piperazine;

N-[di-(4-methoxyphenyl)methyl]piperazine;

N-[di-(2-chlorophenyl)methyl]piperazine;

N-[di-(3-chlorophenyl)methyl]piperazine;

N-[di-(4-chlorophenyl)methyl]piperazine;

N-[di-(4-fluorophenyl)methyl]piperazine;

N-benzylpiperazine;

N-[1-(4-chlorophenyl)-1-(phenyl)methyl]piperazine;

N-(2,2-diphenylethyl)piperazine;

N-[3-(phenyl)-3-(4-methoxyphenyl)propyl]piperazine; and

N-(4,4-diphenylbutyl)piperazine,

there is obtained:

1-[di-(2-methylphenyl)methyl]-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-h ydroxyethyl]piperazine trihydrochloride;

1-[di-(3-methylphenyl)methyl]-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-h ydroxyethyl]piperazine trihydrochloride;

1-[di-(4-methylphenyl)methyl]-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-h ydroxyethyl]piperazine trihydrochloride;

1-[di-(2-t-butylphenyl)methyl]-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2- hydroxyethyl]piperazine trihydrochloride;

1-[di-(3-t-butylphenyl)methyl]-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2- hydroxyethyl]piperazine trihydrochloride;

1-[di-(4-t-butylphenyl)methyl]-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2- hydroxyethyl]piperazine trihydrochloride;

1-[di-(2-methoxyphenyl)methyl]-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2- hydroxyethyl]piperazine trihydrochloride;

1-[di-(3-methoxyphenyl)methyl]-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2- hydroxyethyl]piperazine trihydrochloride;

1-[di-(4-methoxyphenyl)methyl]-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2- hydroxyethyl]piperazine trihydrochloride;

1-[di-(2-chlorophenyl)methyl]-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-h ydroxyethyl]piperazine trihydrochloride;

1-[di-(3-chlorophenyl)methyl]-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-h ydroxyethyl]piperazine trihydrochloride;

1-[di-(4-chlorophenyl)methyl]-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-h ydroxyethyl]piperazine trihydrochloride;

1-[di-(4-fluorophenyl)methyl]-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-h ydroxyethyl]piperazine trihydrochloride;

1-benzyl-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethyl]piperazine trihydrochloride;

1-[(4-chlorophenyl)-1-(phenyl)methyl]-4-[2-(2-phenyl-5-methyl-1H-imidazol-4 -yl)-2-hydroxyethyl]piperazine trihydrochloride;

1-(2,2-diphenylethyl)-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-hydroxyet hyl]piperazine trihydrochloride;

1-[3-(phenyl)-3-(4-methoxyphenyl)propyl]-4-[2-(2-phenyl-5-methyl-1H-imidazo l-4-yl)-2-hydroxyethyl]piperazine trihydrochloride; and

1-(4,4-diphenylbutyl)-4-[2-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-hydroxyet hyl]piperazine trihydrochloride.

3E. TriHCl Salt of Formula A Where R.sup.3 is Hydroxy; m is 2; n is 1 or 2; and Varying R.sup.1 ; R.sup.2 ; R.sup.4 ; R.sup.5 and q

Similarly, by following the procedures of Parts C and D above, other compounds of Formula A where R.sup.3 is hydroxy, m is 2, and n is 1 or 2 are obtained, such as:

1-[(4-chlorophenyl)-1-(phenyl)methyl]-4-[2-(2-methyl-5-phenyl-1H-imidazol-4 -yl)-2-hydroxyethyl]piperazine trihydrochloride;

1-[(4-chlorophenyl)-1-(phenyl)methyl]-4-[3-(2-phenyl-5-methyl-1H-imidazol-4 -yl)-3-hydroxypropyl]piperazine trihydrochloride, by starting with 2-phenyl-4-(3-bromopropanoyl)-5-methyl-1H-imidazole in part 3A;

1-(2,2-diphenylethyl)-4-[2-(2-(4-methylphenyl)-5-methyl-1H-imidazol-4-yl)-2 -hydroxyethyl]piperazine trihydrochloride;

1-[3-(phenyl)-3-(4-methoxyphenyl)propyl]-4-[2-(2-cyclopropyl-5-ethyl-1H-imi dazol-4-yl)-2-hydroxyethyl]piperazine trihydrochloride; and

1-(4,4-diphenylbutyl)-4-[2-(5-methyl-1H-imidazol-4-yl)-2-hydroxyethyl]piper azine trihydrochloride.

3F. Formula A Varying m

Similarly, by following the procedures of Parts A-E above, but replacing the piperazines there-used with the corresponding diazepines, the compounds of Formula A wherein m is 3 are obtained.

EXAMPLE 4

1-Diphenylmethyl-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-methylpropyl]p iperazine and Derivatives Thereof

4A. Formula 12 Where R.sup.1 is Phenyl; R.sup.2 is Methyl; and R.sup.6 is Isopropyl

35 Grams (0.45 mol) of 2-chloropropane was added to 10.8 g (0.45 mol) of magnesium in 100 ml of diethyl ether. Then 55.8 g (0.3 mol) of 2-phenyl-4-formyl-5-methyl-1H-imidazole in 100 ml of THF were added. At the end of the addition, the mixture was refluxed for 30 minutes and then cooled and poured on ice water. The aqueous layer was extracted twice with 100 ml of diethyl ether. Evaporation of the solvent gave a residue which was recrystallized in ethanol to yield 40 grams of 2-phenyl-4-(1-hydroxy-2-methylpropyl)-5-methyl-1H-imidazole, which melted at 214.degree. C.

4B. Formula 12 Where R.sup.6 is Isopropyl; and Varying R.sup.1 and R.sup.2

Similarly, following the procedure of Part A above, but replacing 2-phenyl-4-formyl-5-methyl-1H-imidazole with:

2-(3-methylphenyl)-5-methyl-4-formyl-1H-imidazole;

2-(2-methylphenyl)-5-methyl-4-formyl-1H-imidazole;

2-(4-t-butylphenyl)-5-methyl-4-formyl-1H-imidazole;

2-(3-t-butylphenyl)-5-methyl-4-formyl-1H-imidazole;

2-(2-t-butylphenyl)-5-methyl-4-formyl-1H-imidazole;

2-(4-chlorophenyl)-5-methyl-4-formyl-1H-imidazole;

2-(3-chlorophenyl)-5-methyl-4-formyl-1H-imidazole;

2-(2-chlorophenyl)-5-methyl-4-formyl-1H-imidazole;

2-(4-methoxyphenyl)-5-methyl-4-formyl-1H-imidazole;

2-(3-methoxyphenyl)-5-methyl-4-formyl-1H-imidazole;

2-(2-methoxyphenyl)-5-methyl-4-formyl-1H-imidazole;

2-(2-methylphenyl)-5-ethyl-4-formyl-1H-imidazole;

2-(4-methylphenyl)-5-t-butyl-4-formyl-1H-imidazole;

2-(4-methylphenyl)-4-formyl-1H-imidazole,

2-(3,4-dimethoxyphenyl)-4-formyl-5-methyl-1H-imidazole;

2,5-di-(4-methylphenyl)-4-formyl-1H-imidazole;

2-(cyclopropyl)-4-formyl-5-methyl-1H-imidazole;

2-ethyl-4-formyl-5-methyl-1H-imidazole;

4-formyl-5-phenyl-1H-imidazole; and

2-methyl-4-formyl-5-(3-methoxyphenyl)-1H-imidazole,

there is obtained:

2-(3-methylphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(2-methylphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(4-t-butylphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(3-t-butylphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(2-t-butylphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(4-chlorophenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(3-chlorophenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(2-chlorophenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(4-methoxyphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(3-methoxyphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(2-methoxyphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(2-methylphenyl)-5-ethyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(4-methylphenyl)-5-t-butyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(4-methylphenyl)-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(3,4-dimethoxyphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2,5-di-(4-methylphenyl)-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-cyclopropyl-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-ethyl-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

4-(1-hydroxy-2-methylpropyl)-5-phenyl-1H-imidazole; and

2-methyl-5-(3-methoxyphenyl)-4-(1-hydroxy-2-methylpropyl)-1H-imidazole.

4C. Formula 13 Where R.sup.1 is Phenyl; R.sup.2 is Methyl; R.sup.6 is Isopropyl; and X is Chloro

27 g of 2-phenyl-4-(1-hydroxy-2-methylpropyl)-5-methyl-1H-imidazole are dissolved in 700 ml of chloroform with 44 ml of thionyl chloride (SOCl.sub.2) and refluxed for 5 hours. 2-Phenyl-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride is isolated in quantitative yield.

4D. Formula 13 Where R.sup.6 is Isopropyl; X is Chloro; and Varying R.sup.1 and R.sup.2

Similarly, following the procedure of Part C above, but replacing 2-phenyl-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole with:

2-(3-methylphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(2-methylphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(4-t-butylphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(3-t-butylphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(2-t-butylphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(4-chlorophenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(3-chlorophenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(2-chlorophenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(4-methoxyphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(3-methoxyphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(2-methoxyphenyl)-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(2-methylphenyl)-5-ethyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-(4-methylphenyl)-5-t-butyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole hydrochloride;

2-(4-methylphenyl)-4-(1-hydroxy-2-methylpropyl)-1H-imidazole hydrochloride;

2-(3,4-dimethoxyphenyl)-4-(1-hydroxy-2-methylpropyl)-5-methyl-1H-imidazole;

2,5-di-(4-methylphenyl)-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-cyclopropyl-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

2-ethyl-5-methyl-4-(1-hydroxy-2-methylpropyl)-1H-imidazole;

4-(1-hydroxy-2-methylpropyl)-5-1H-imidazole; and

2-methyl-4-(1-hydroxy-2-methylpropyl)-5-(3-methoxyphenyl)-1H-imidazole,

there is obtained:

2-(3-methylphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(2-methylphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(4-t-butylphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(3-t-butylphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(2-t-butylphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(4-chlorophenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(3-chlorophenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(2-chlorophenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(4-methoxyphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(3-methoxyphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(2-methoxyphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(2-methylphenyl)-5-ethyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(4-methylphenyl)-5-t-butyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(4-methylphenyl)-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(3,4-dimethoxyphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2,5-di-(4-methylphenyl)-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-cyclopropyl-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-ethyl-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole;

4-(1-chloro-2-methylpropyl)-5-phenyl-1H-imidazole hydrochloride; and

2-methyl-5-(3-methoxyphenyl)-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride.

4E. TriHCl Salt of Formula A Where R.sup.1 is Phenyl; R.sup.2 is Methyl; R.sup.3 is Isopropyl; R.sup.4 and R.sup.5 are Phenyl; m is 2; n is 0; and q is 0

14 Grams (0.05 mol) of diphenylmethyl-4-piperazine and 6 grams (0.15 mol) of sodium hydroxide are dissolved in 180 ml of a mixture of ethanol:water 60:40. The mixture is heated to reflux, then 2-phenyl-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride in 180 milliliters of ethanol:water 60:40 are added dropwise. After 4 to 5 hours under reflux, the reaction mixture is allowed to cool to room temperature. The oil that separated is washed twice with water, then dissolved in ether and hydrochloric acid is added. The precipitate is recrystallized from ethanol to give 1-diphenylmethyl-4-[1-(2-phenyl-5-methyl-1H-imidazole-4-yl)-2-methylpropyl ]piperazine trihydrochloride.

4F. TriHCl Salt of Formula A Where R.sup.3 is Isopropyl; R.sup.4 and R.sup.5 are Phenyl; m is 2; n is 0; q is 0; and Varying R.sup.1 and R.sup.2

Similarly, following the procedure of Part E above, but replacing 2-phenyl-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride with:

2-(3-methylphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(2-methylphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(4-t-butylphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(3-t-butylphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(2-t-butylphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(4-chlorophenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(3-chlorophenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(2-chlorophenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(4-methoxyphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(3-methoxyphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(2-methoxyphenyl)-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(2-methylphenyl)-5-ethyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(4-methylphenyl)-5-t-butyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(4-methylphenyl)-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-(3,4-dimethoxyphenyl)-4-(1-chloro-2-methylpropyl)-5-methyl-1H-imidazole hydrochloride;

2,5-di-(4-methylphenyl)-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-cyclopropyl-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole hydrochloride;

2-ethyl-5-methyl-4-(1-chloro-2-methylpropyl)-1H-imidazole;

4-(1-chloro-2-methylpropyl)-5-phenyl-1H-imidazole hydrochloride; and

2-methyl-4-(1-chloro-2-methylpropyl)-5-(3-methoxyphenyl)-1H-imidazole hydrochloride,

there is obtained:

1-diphenylmethyl-4-[1-(2-(3-methylphenyl)-5-methyl-1H-imidazol-4-yl)-2-meth ylpropyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(2-methylphenyl)-5-methyl-1H-imidazol-4-yl)-2-meth ylpropyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(4-t-butylphenyl)-5-methyl-1H-imidazol-4-yl)-2-met hylpropyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(3-t-butylphenyl)-5-methyl-1H-imidazol-4-yl)-2-met hylpropyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(2-t-butylphenyl)-5-methyl-1H-imidazol-4-yl)-2-met hylpropyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(4-chlorophenyl)-5-methyl-1H-imidazol-4-yl)-2-meth ylpropyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(3-chlorophenyl)-5-methyl-1H-imidazol-4-yl)-2-meth ylpropyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(2-chlorophenyl)-5-methyl-1H-imidazol-4-yl)-2-meth ylpropyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(4-methoxyphenyl)-5-methyl-1H-imidazol-4-yl)-2-met hylpropyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(3-methoxyphenyl)-5-methyl-1H-imidazol-4-yl)-2-met hylpropyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(2-methoxyphenyl)-5-methyl-1H-imidazol-4-yl)-2-met hylpropyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(2-methylphenyl)-5-ethyl-1H-imidazol-4-yl)-2-methy lpropyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(4-methylphenyl)-5-t-butyl-1H-imidazol-4-yl)-2-met hylpropyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(4-methylphenyl)-1H-imidazol-4-yl)-2-methylpropyl] piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(3,4-dimethoxyphenyl)-5-methyl-1H-imidazol-4-yl)-2 -methylpropyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2,5-di-(4-methylphenyl)-1H-imidazol-4-yl)-2-methylpr opyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-cyclopropyl-5-methyl-1H-imidazol-4-yl)-2-methylpro pyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-ethyl-5-methyl-1H-imidazol-4-yl)-2-methylpropyl]pi perazine trihydrochloride;

1-diphenylmethyl-4-[1-(5-phenyl-1H-imidazol-4-yl)-2-methylpropyl]piperazine trihydrochloride; and

1-diphenylmethyl-4-[1-(2-methyl-5-(3-methoxyphenyl)-1H-imidazol-4-yl)-2-met hylpropyl]piperazine trihydrochloride.

4G. Formula A Where R.sup.3 is Isopropyl, Varying q, R.sup.4 and R.sup.5

Similarly, following the procedure of Part E above, but replacing N-(diphenylmethyl)piperazine with:

N-[di-(2-methylphenyl)methyl]piperazine;

N-[di-(3-methylphenyl)methyl]piperazine;

N-[di-(4-methylphenyl)methyl]piperazine;

N-[di-(2-t-butylphenyl)methyl]piperazine;

N-[di-(3-t-butylphenyl)methyl]piperazine;

N-[di-(4-t-butylphenyl)methyl]piperazine;

N-[di-(2-methoxyphenyl)methyl]piperazine;

N-[di-(3-methoxyphenyl)methyl]piperazine;

N-[di-(4-methoxyphenyl)methyl]piperazine;

N-[di-(2-chlorophenyl)methyl]piperazine;

N-[di-(3-chlorophenyl)methyl]piperazine;

N-[di-(4-chlorophenyl)methyl]piperazine;

N-[di-(4-fluorophenyl)methyl]piperazine;

N-benzylpiperazine;

N-[1-(4-chlorophenyl)-1-(phenyl)methyl]piperazine;

N-(2,2-diphenylethyl)piperazine;

N-[3-(phenyl)-3-(4-methoxyphenyl)propyl]piperazine; and

N-(4,4-diphenylbutyl)piperazine,

there is obtained:

1-[di-(2-methylphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-m ethylpropyl]piperazine trihydrochloride;

1-[di-(3-methylphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-m ethylpropyl]piperazine trihydrochloride;

1-[di-(4-methylphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-m ethylpropyl]piperazine trihydrochloride;

1-[di-(2-t-butylphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2- methylpropyl]piperazine trihydrochloride;

1-[di-(3-t-butylphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2- methylpropyl]piperazine trihydrochloride;

1-[di-(4-t-butylphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2- methylpropyl]piperazine trihydrochloride;

1-[di-(2-methoxyphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2- methylpropyl]piperazine trihydrochloride;

1-[di-(3-methoxyphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2- methylpropyl]piperazine trihydrochloride;

1-[di-(4-methoxyphenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2- methylpropyl]piperazine trihydrochloride;

1-[di-(2-chlorophenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-m ethylpropyl]piperazine trihydrochloride;

1-[di-(3-chlorophenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-m ethylpropyl]piperazine trihydrochloride;

1-[di-(4-chlorophenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-m ethylpropyl]piperazine trihydrochloride;

1-[di-(4-fluorophenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-m ethylpropyl]piperazine trihydrochloride;

1-benzyl-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-methylpropyl]piperazin e trihydrochloride;

1-[1-(4-chlorophenyl)-1-(phenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol -4-yl)-2-methylpropyl]piperazine trihydrochloride;

1-(2,2-diphenylethyl)-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-methylpro pyl]piperazine trihydrochloride;

1-[3-(phenyl)-3-(4-methyoxyphenyl)propyl]-4-[1-(2-phenyl-5-methyl-1H-imidaz ol-4-yl)-2-methylpropyl]piperazine trihydrochloride; and

1-(4,4-diphenylbutyl)-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-methylpro pyl]piperazine trihydrochloride.

4H. TriHCl Salt of Formula A Where R.sup.3 is Lower Alkyl Other Than Isopropyl

Similarly, by following the procedures of Parts A-G above, and substituting in for 2-chloropropane in Part A the following compounds:

1-chloroethane;

chloromethane;

2-chlorobutane,

there are obtained the corresponding compounds where R.sup.3 is, respectively, ethyl, methyl and butyl, such as:

1-diphenylmethyl-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)propyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)ethyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-methylbutyl]pi perazine trihydrochloride;

1-(4,4-diphenylbutyl)-4-[1-(2-phenyl-5-methyl-1H-imidazol-4-yl)-2-methylbut yl]piperazine trihydrochloride;

1-[1-(4-chlorophenyl)-1-(phenyl)methyl]-4-[1-(2-phenyl-5-methyl-1H-imidazol -4-yl)propyl]piperazine trihydrochloride;

1-diphenylmethyl-4-[1-(2-(4-methylphenyl)-5-ethyl-1H-imidazol-4-yl)propyl]p iperazine trihydrochloride; and

1-diphenylmethyl-4-[1-(2,5-diphenyl-1H-imidazol-4-yl)-2-methylbutyl]piperaz ine trihydrochloride.

4I. Formula A Varying m

Similarly, by following the procedures of Parts A-H above, but replacing the piperazines there-used with the corresponding diazepines, the compounds of Formula A wherein m is 3 are obtained.

EXAMPLE 5

1-Diphenylmethyl-4-[2-(4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]pip erazine and Derivatives Thereof

5A. Formula 15 Where R.sup.1 is 4-Methylphenyl and R.sup.6 is Ethyl

A solution of 4-methylbenzonitrile in 99% ethanol was saturated with 3 equivalents of dry HCl gas and the reaction mixture was stirred overnight. The precipitate which formed was filtered and the mother liquors were placed in a freezer at -18.degree. C. overnight. A second crop was obtained from the mother liquors. The combined crops were dried at 30.degree. C. overnight under vacuum, giving 78% yield of ethoxy-4-methylbenzimine hydrochloride (compound of Formula 15).

5B. Formula 16 Where R.sup.1 is 4-Methylphenyl

The product of step 5A was added portionwise with stirring to methanol which had been saturated with ammonia, in the ratio of 1 liter methanol to 1 kilogram of product of step A. The product of step 5A dissolved slowly and the solution was stirred overnight. Two thirds of the volume was evaporated under vacuum. The remaining solution was diluted with three times its volume of isopropylacetate. The solution was filtered and dried overnight at 50.degree. C. to yield 4-methylbenzamidine hydrochloride (compound of Formula 16) in 90% yield.

5C. Formula A Where R.sup.1 is 4-Methylphenyl; R.sup.2 is Methyl; R.sup.3 is Hydrogen; R.sup.4 and R.sup.5 are Phenyl; m is 2; n is 0; and q is 0

One mole of the product of step 5B was dissolved in 2 liters of 99% ethanol. 1.1 Moles of butanedione were added dropwise, the solution was warmed to reflux and refluxed for 20 hours. The solution was allowed to cool to 30.degree. C. and 1 mole of powdered N-(diphenylmethyl)piperazine was added portionwise. This was followed by the addition of 1 liter of water, 1.5 equivalents of sodium hydroxide (as 12N solution), and 1.1 equivalents of lithium bromide. The solution was filtered to remove insolubles and then refluxed for 5 hours. The solution was allowed to cool to room temperature and was stirred overnight, forming the title compound as a precipitate.

The precipitate was filtered and the filter cake was added to an ethanol:water mixture (60:40) in the ratio of 3 liters of solvent mixture to 1 kilogram of filter cake. The solution was warmed to 70.degree. C. for one hour and then allowed to cool to room temperature. The precipitate formed was filtered and dried overnight at 80.degree. C. under vacuum to give 1-diphenylmethyl-4-[2-(-4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine, the title compound, in 88% yield.

5D. TriHCL Salt of Formula A Where R.sup.1 is 4-Methylphenyl; R.sup.2 is Methyl; R.sup.3 is Hydrogen; R.sup.4 and R.sup.5 are Phenyl; m is 2; n is 0; and q is 0

The trihydrochloride salt of the free base of the product of step 5C was formed by dissolving the free base of step 5C in 99% ethanol at the ratio of 1.1 liter of ethanol per mole of product. One mole of 1N HCl solution was slowly added. The solution was filtered and then warmed to 60.degree. C. With slow addition, 250 ml of 12N HCl solution were added. The solution was slowly cooled to -10.degree. C. and the precipitate was filtered off and dried under vacuum at 100.degree. C. for 48 hours to yield 1-diphenylmethyl-4-[2-(-4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine trichydrochloride, m.p. 204.degree.-205.degree. C.

5E. Formula A, Varying R.sup.1

Similarly, following the procedure of parts A, B and C above, but replacing 4-methylbenzonitrile with:

benzonitrile;

4-chlorobenzonitrile;

3-trifluoromethylbenzonitrile,

there is obtained:

1-diphenylmethyl-4-[2-phenyl-5-methyl-1H-imidazol-4-yl)methyl]piperazine;

1-diphenylmethyl-4-[2-(-4-chlorophenyl)-5-methyl-1H-imidazol-4-yl)methyl]pi perazine; and

1-diphenylmethyl-4-[2-(-3-trifluoromethylphenyl)-5-methyl-1H-imidazol-4-yl) methyl]piperazine.

5F. Formula A, Varying R.sup.2 and R.sup.3

Similarly, following the procedure of parts A, B and C above, but replacing butanedione with:

3,4-hexanedione;

2,3-hexanedione;

2,3-heptanedione; and

3,4-heptanedione,

there is obtained, respectively:

1-diphenylmethyl-4-[1-(2-(4-methylphenyl)-5-ethyl-1H-imidazol-4-yl)ethyl]pi perazine;

a mixture of:

1-diphenylmethyl-4-[1-(2-(4-methylphenyl)-5-methyl-1H-imidazol-4-yl)propyl] piperazine, and

1-diphenylmethyl-4-[(2-(4-methylphenyl)-5-propyl-1H-imidazol-4-yl)methyl]pi perazine;

a mixture of:

1-diphenylmethyl-4-[1-(2-(4-methylphenyl)-5-methyl-1H-imidazol-4-yl)butyl]p iperazine, and

1-diphenylmethyl-4-[(2-(4-methylphenyl)-5-butyl-1H-imidazol-4-yl)methyl]pip erazine; and

a mixture of:

1-diphenylmethyl-4-[1-(2-(4-methylphenyl)-5-propyl-1H-imidazol-4-yl)ethyl]p iperazine, and

1-diphenylmethyl-4-[1-(2-(4-methylphenyl)-5-ethyl-1H-imidazol-4-yl)propyl]p iperazine.

5G. Formula A Where R.sup.1 is 4-Methylphenyl; R.sup.2 is Methyl; R.sup.3 is Hydrogen; m is 2; n is 0; Varying q, R.sup.4 and R.sup.5

Similarly, following the procedure of parts A, B and C above, but replacing N-(diphenylmethyl)piperazine with:

N-[di-(2-methylphenyl)methyl]piperazine;

N-[di-(3-methylphenyl)methyl]piperazine;

N-[di-(4-methylphenyl)methyl]piperazine;

N-[di-(2-t-butylphenyl)methyl]piperazine;

N-[di-(3-t-butylphenyl)methyl]piperazine;

N-[di-(4-t-butylphenyl)methyl]piperazine;

N-[di-(2-methoxyphenyl)methyl]piperazine;

N-[di-(3-methoxyphenyl)methyl]piperazine;

N-[di-(4-methoxyphenyl)methyl]piperazine;

N-[di-(2-chlorophenyl)methyl]piperazine;

N-[di-(3-chlorophenyl)methyl]piperazine;

N-[di-(4-chlorophenyl)methyl]piperazine;

N-[di-(4-fluorophenyl)methyl]piperazine;

N-benzylpiperazine;

N-[1-(4-chlorophenyl)-1-(phenyl)methyl]piperazine;

N-(2,2-diphenylethyl)piperazine;

N-[3-(phenyl)-3-(4-methoxyphenyl)propyl]piperazine; and

N-(4,4-diphenylbutyl)piperazine,

there is obtained:

1-[di-(2-methylphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4 -yl)methyl]piperazine;

1-[di-(3-methylphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4 -yl)methyl]piperazine;

1-[di-(4-methylphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4 -yl)methyl]piperazine;

1-[di-(2-t-butylphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol- 4-yl)methyl]piperazine;

1-[di-(3-t-butylphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol- 4-yl)methyl]piperazine;

1-[di-(4-t-butylphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol- 4-yl)methyl]piperazine;

1-[di-(2-methoxyphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol- 4-yl)methyl]piperazine;

1-[di-(3-methoxyphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol- 4-yl)methyl]piperazine;

1-[di-(4-methoxyphenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol- 4-yl)methyl]piperazine;

1-[di-(2-chlorophenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4 -yl)methyl]piperazine;

1-[di-(3-chlorophenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4 -yl)methyl]piperazine;

1-[di-(4-chlorophenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4 -yl)methyl]piperazine, the trihydrochloride salt of which has a melting point of about 225.degree. C.;

1-[di-(4-fluorophenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4 -yl)methyl]piperazine, the trihydrochloride salt of which has a melting point of about 210.degree. C.;

1-benzyl-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]piperazine ;

1-[1-(4-chlorophenyl)-1-(phenyl)methyl]-4-[(2-(4-methylphenyl)-5-methyl-1H- imidazol-4-yl)methyl]piperazine;

1-(2,2-diphenylethyl)-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4-yl)meth yl]piperazine;

1-[3-(phenyl)-3-(4-methyoxyphenyl)propyl]-4-[(2-(4-methylphenyl)-5-methyl-1 H-imidazol-4-yl)methyl]piperazine; and

1-(4,4-diphenylbutyl)-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4-yl)meth yl]piperazine.

5H. Formula A Varying m

Similarly, by following the procedures of Parts A-G above, but replacing the piperazines there-used with the corresponding diazepines, the compounds of Formula A wherein m is 3 are obtained.

EXAMPLE 6

Conversion of Free Compound To Salt

Trihydrochloride salt--The hydrochloride salt was obtained by addition of hydrochloric acid to the free base of a compound of Formula A dissolved in ethanol or ether. See step D of Example 5.

Monohydrochloride salt--100 g. of 1-diphenylmethyl-4-[2-(-4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine were dissolved in 300 ml of ethanol at 95.degree. C. To this solution 1 equivalent of 1N HCl was added with stirring. The reaction mixture was stirred at room temperature for 2 hours then the solvents were evaporated off under reduced pressure. The residue was dissolved in ether and the precipitate was filtered. The precipitate was recrystallized from isopropyl ether:acetone (1:1) to yield 1-diphenylmethyl-4-[2-(-4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine monohydrochloride, m.p. 186.degree.-188.degree. C. with decomposition.

Monomaleate salt--5 g. (0.0115 mole) of 1-diphenylmethyl-4-[2-(-4-methylphenyl)-5-methyl-1H-imidazol-4-yl)-methyl] piperazine were dissolved in 300 ml of ethanol at 95.degree. C. To this solution 1.34 g (0.0115 mole) of maleic acid was added with stirring. The reaction mixture was stirred at room temperature for 2 hours then the solvents were evaporated off under reduced pressure. The residue was dissolved in ether and the precipitate was filtered. The precipitate was recrystallized from isopropyl ether:acetone (1:1) to yield 1-diphenylmethyl-4-[2-(-4-methylphenyl)-5-methyl-1H-imidazol-4-yl)-methyl] piperazine monomaleate, m.p. 164.degree.-166.degree. C. with decomposition.

Trifumarate salt--To 5 g. of 1-diphenylmethyl-4-[2-(-4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine (0.0115 mole) in acetone (100 ml) there was added 1.33 g. (0.0115 mole) of fumaric acid. The solution was heated to reflux, allowed to cool to room temperature, and allowed to stand at room temperature until precipitate formed. The precipitate was collected by filtration and recrystallized from ethanol to give the fumarate salt of 1-diphenylmethyl-4-[2-(-4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine, m.p. 195.degree. C. in almost quantitative yield.

In a similar manner, all compounds of Formula A in free base form can be converted to the acid addition salts by treatment with the appropriate acid, for example, hydrobromic acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid, propionic acid, glycolic acid, pyruvic acid, oxalic acid, malonic acid, succinic acid, malic acid, maleic acid, tartaric acid, citric acid, lactic acid, benzoic acid, cinnamic acid, mandelic acid, methanesulfonic acid, ethanesulfonic acid, p-toluene- sulfonic acid, and the like.

EXAMPLE 7

Conversion of Salt to Free Base

20 g. of 1-diphenylmethyl-4-[2-(-4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine trihydrochloride were solubilized in 200 ml of water. Sodium hydroxide (5N) was added dropwise with stirring until pH 8-9. The aqueous medium was extracted twice by 200 ml of dichloromethane. The organic phases were combined then washed with cold water until neutrality. Sodium sulfate was added to dry the organic phase, then the solvent was evaporated under reduced pressure. The resulting residue was crystallized from aqueous ethanol (90%) to give 1-diphenylmethyl-4-[2-(-4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine.

If desired, the extraction phase can be eliminated to allow direct recovery of the product followed by recrystallization.

EXAMPLE 8

Conversion of one Salt to Another Salt

5 g of 1-diphenylmethyl-4-[2-(-4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine monofumarate were dissolved in 100 ml of hot ethanol. 3 ml of commercial concentrated HCl solution (10N) were added with stirring. The solution was refluxed for 30 minutes then the solution was allowed to cool to room temperature. The solvent was evaporated off and the residue was crystallized twice from ethanol at 98.degree. C. to yield 1-diphenylmethyl-4-[2-(-4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine trihydrochloride, m.p. 202.degree.-204.degree. with decomposition.

EXAMPLE 9

______________________________________ I.V. Formulation Ingredients Amounts ______________________________________ Active Agent 6.0 mg/ml Tartaric Acid 6.19 mg/ml Sorbitol 40.5 mg/ml Water q.s. to 1 ml ______________________________________

The acid is added to a vessel and dissolved in water, followed by the addition of the active agent, sorbitol, and water sufficient to bring the total volume to 1 ml. The resulting solution can be administered as prepared, or can be dispersed in an infusionfluid.

The active compound in the above formulation is 1-diphenylmethyl-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine. Other compounds of Formula A and the pharmaceutically acceptable salts thereof may be substituted therein.

EXAMPLES 10-15

The following examples illustrate the preparation of representative pharmaceutical formulations containing an active compound of Formula A, e.g., 1-diphenylmethyl-4-[(2-(4-methylphenyl)-5-methyl-1H-imidazol-4-yl)methyl]p iperazine trihydrochloride. Other compounds and salts of Formula A, such as those prepared in accordance with Examples 1-8, can be used as the active compound in the formulations of Examples 10-14.

EXAMPLE 10

______________________________________ Quantity per Ingredients tablet, mgs. ______________________________________ Active compound 25 cornstarch 20 lactose, spray-dried 153 magnesium stearate 2 ______________________________________

The above ingredients are thoroughly mixed and pressed into single scored tablets.

EXAMPLE 11

______________________________________ Quantity per Ingredients capsule, mgs. ______________________________________ Active compound 100 lactose, spray-dried 148 magnesium stearate 2 ______________________________________

The above ingredients are mixed and introduced into a hard-shell gelatin capsule.

EXAMPLE 12

______________________________________ Quantity per Ingredients tablet, mgs. ______________________________________ Active compound 1 cornstarch 50 lactose 145 magnesium stearate 5 ______________________________________

The above ingredients are mixed intimately and pressed into single scored tablets.

EXAMPLE 13

______________________________________ Quantity per Ingredients capsule, mgs. ______________________________________ Active compound 150 lactose 92 ______________________________________

The above ingredients are mixed and introduced into a hard-shell gelatin capsule.

EXAMPLE 14

An oral suspension is prepared having the following composition:

______________________________________ Ingredients ______________________________________ Active compound 0.1 g fumaric acid 0.5 g sodium chloride 2.0 g methyl paraben 0.1 g granulated sugar 25.5 g sorbitol (70% solution) 12.85 g Veegum K (Vanderbilt Co.) 1.0 g flavoring 0.035 ml colorings 0.5 mg distilled water q.s. to 100 ml ______________________________________

EXAMPLE 15

Ischemia (Stroke, Epilepsy)

A. Five minute model of bilateral common carotid artery occlusion in the gerbil with 72 hour survival

1) Normal animals--Using the procedure of Kirino Brain Res., 239, 57 (1982), microscopic sections (8 mm) of brain tissue were obtained and stained with cresyl fast violet and haematoxylin-eosin. Abnormal brain cells were counted and expressed as a percentage of the total area counted using the procedure of Alps, et al., Br. J. Pharmacol. Proc. Suppl., 88, 250P (1986). The findings for 10 animals with 100 microscopic fields counted were: mean % abnormal neurones=4.54.+-.0.44%.

2) Sham-operated animals--The animals were anesthetized with a halothane-nitrous oxide-oxygen mixture. (Halothane was initially 5% then reduced to 1.5%. The gases were delivered via face mask.) Carotid arteries were surgically exposed (no ischemia) and survival time was 72 hours post-surgery. The microscopic sections were prepared and counted as in 1) above. In this case 7 animals were used and 100 microscopic fields were counted. The results were: mean % abnormal neurones=4.61.+-.0.31%.

3) Untreated ischemic controls--In this case animals were subjected to 5 minute bilateral carotid artery occlusion with 72 hour survival. The microscopic sections were prepared and counted as in 1) above. In this case 12 animals were used and 120 microscopic fields were counted. The results were: mean % abnormal neurones=78.30.+-.2.94%.

4). Parenteral, 15 minute pre-ischemia treated--The animals were given 500 mg/kg i.p. of 1-diphenylmethyl-4-[(2-(4-methylphenyl)-5-methylimidazol-4-yl)methyl]piper azine trihydrochloride 15 minutes prior to ischaemic insult. The treatment was repeated b.i.d. for 72 hours. The microscopic sections were prepared and counted as in 1) above. In this case 10 animals were used and 100 microscopic fields were counted. The results were: mean % abnormal neurones=26.90.+-.3.30%.

5) Parenteral 15 minute pre-ischemic treated--The animals were given 250 mg/kg i.p. of 1-diphenylmethyl-4-[(2-(4-methylphenyl)-5-methylimidazol-4-yl)-methyl]pipe razine trihydrochloride 15 minutes prior to ischaemic insult. Treatment was repeated b.i.d. for 72 hours. The microscopic sections were prepared and counted as in 1) above. In this case 6 animals were used and 60 microscopic fields were counted. The results were: mean % abnormal neurones=27.20.+-.4.30%.

6) Parenteral 15 minute post-ischemia treated--The animals were given 500 mg/kg i.p. of 1-diphenylmethyl-4-[(2-(4-methylphenyl)-5-methylimidazol-4-yl)-methyl]pipe razine trihydrochloride 15 minutes after ischaemic insult. The treatment was repeated b.i.d. for 72 hours. The microscopic sections were prepared and counted as in 1) above. In this case 9 animals were used and 90 microscopic fields were counted. The results were: mean % abnormal neurones=41.70.+-.4.60%.

7) Oral, pre-ischemia treated--The animals were given 5 mg/kg p.o. b.i.d. of 1-diphenyl-methyl-4-[(2-(4-methylphenyl)-5-methylimidazol-4-yl)-methyl] piperazine trihydrochloride for 3 days and on the 4th day at 1 hour pre-ischaemic. Treatment was repeated b.i.d. for 72 hours. The microscopic sections were prepared and counted as in 1) above. In this case 11 animals were used and 110 microscopic fields were counted. The results were: mean % abnormal neurones=3.00.+-.1.00%.

8) Oral, pre-ischemia treated--The animals were given 10 mg/kg p.o. of 1-diphenyl-methyl-4-[(2-(4-methylphenyl)-5-methylimidazol-4-yl)-methyl]pip erazine trihydrochloride for 3 days and on 4th day at 1 hour pre-ischaemia. Treatment was repeated b.i.d. for 72 hours. The microscopic sections were prepared and counted as in 1) above. In this case 9 animals were used and 90 microscopic fields were counted. The results were: mean % abnormal neurones=22.00.+-.3.10%.

B. Ten minute Model of four vessel occulsion with 72 hour survival.

The procedure used was that of Alps, et al., Neurology, 37, 809 (1987). The object of this assay was to count abnormally appearing cells in 7 different areas and exymers as a percentage of the total area counted. The number of counts per structure depended upon size, e.g., cortical areas had double the number of other areas. Mean whole brain scores were also determined for percent abnormalities. Normal brains were also used to account for incidence of artifact changes attributed to the fixation process.

1) Normal animals--Under pentobarbital anesthesia samples were obtained, fixed with 10% buffered formal gab and microscopic samples were prepared as described in A above. In this case 6 animals were used with the results shown in the below table.

______________________________________ Mean % Abnormal No. Fields Brain Area Neurones Counted ______________________________________ Hip CA.sub.1 1.45 .+-. 0.40% 60 Hip CA.sub.2-5 0.43 .+-. 0.20% 60 Hip Cortex 2.90 .+-. 0.64% 120 Striatum 5.80 .+-. 0.54% 60 Str. Cortex 3.22 .+-. 0.70% 120 Thalmus 4.38 .+-. 0.92% 60 Purk. cells 5.61 .+-. 1.88% 60 Mean Brain 3.33 .+-. 0.33% 540 score Mean score 3.39 .+-. 0.76% 7 per area ______________________________________

2) Untreated (saline) ischemic controls--The animals were subjected to 10 minutes of bilateral common carotid artery occlusion (with previously surgically sealed vertebral arteries) with 72 hours survival. The microscopic sections were prepared as in 1) above. In this case 11 animals were used with the results shown in the below table.

______________________________________ Mean % Abnormal No. Fields Brain Area Neurones Counted ______________________________________ Hip CA.sub.1 71.60 .+-. 3.00% 110 Hip CA.sub.2-5 23.80 .+-. 2.70% 110 Hip. Cortex 48.50 .+-. 2.20% 220 Striatum 45.10 .+-. 2.60% 110 Str. Cortex 42.50 .+-. 2.10% 220 Thalamus 35.30 .+-. 2.00% 110 Purk. cells 32.10 .+-. 3.40% 110 Mean score 42.70 .+-. 5.80% 7 per area ______________________________________

Parenteral, post-ischaemia treated--The animals were given 100 mg/kg i.a. of 1-diphenyl-methyl-4-[(2-(4-methylphenyl)-5-methylimidazol-4-yl)-methyl] piperazine trihydrochloride 5 minutes post-ischaemia plus 500 mg/kg i.p. of 1-diphenyl-methyl-4-[(2-(4-methylphenyl)-5-methylimidazol-4-yl)-methyl]pip erazine trihydrochloride 15 minutes post-ischaemia. The microscopic sections were prepared according to 1) above. In this case 5 animals were used with the results shown in the below table.

______________________________________ Mean % Abnormal No. Fields Brain Area Neurones Counted ______________________________________ Hip CA.sub.1 16.76 .+-. 4.00% 50 Hip CA.sub.2-5 1.78 .+-. 0.99% 50 Hip. Cortex 2.41 .+-. 0.30% 100 Striatum 1.54 .+-. 0.33% 50 Str. Cortex 2.01 .+-. 0.29% 100 Thalamus 0.64 .+-. 0.25% 50 Purk. cells 2.22 .+-. 0.79% 50 ______________________________________

C. The effect of 1-diphenyl-methyl-4-[(2-(4-methylphenyl)-5-methylimidazol-4-yl)-methyl]pip erazine trihydrochloride on pentylenetetrazole-induced seizures and mortality in the mouse.

The procedure used was that described in Allely, and Alps, Br. J. Phramacol. Proc. Suppl., 92, 605P (1987). Groups of 20 or more (see n in table) male CDI mice were predosed with 500 mg/kg i.p. of 1-diphenyl-methyl-4-[(2-(4-methylphenyl)-5-methylimidazol-4-yl)methyl]pipe razine trihydrochloride at one of three dosing schedules - A (15 minutes), B (60 minutes), or C (3 days b.i.d. plus 15 minutes on 4th day) - before challenging with 100 mg/kg of pentylenetetrazole s.c. The animals were then observed for a 30 minute period and the occurrence of clonic or tonic seizures or death noted. Statistical analysis was by a Chi squared test of association. Results compared against saline treated animals are shown in the below table.

______________________________________ Predose Predosed % clonic % tonic Schedule mg/kg i.p. n seizures seizures % death ______________________________________ Saline -- -- 40 92.5 80.0 70.0 Drug A 500 20 85.0 85.0 50.0 B 500 25 88.0 64.0 36.0 C 500 24 66.7 41.7 45.0 ______________________________________

In an oral dose ranging study in rats of 1-diphenyl-methyl-4-[(2-(4-methylphenyl)-5-methylimidazol-4-yl)methyl]-pip erazine trihydrochloride no death or clinical signs of toxicity were seen at up to 25 mg/kg/day.

EXAMPLE 16

Diuresis

Male normotensive rats weighing 290-380 g were divided into four groups of seven animals. All animals were fasted and deprived of water overnight. The following morning, each group of rats was hydrated with deionized water (20 mg/kg. p.o.) 45 minutes prior to the administration of vehicle (1% polysorbate 80 in deionized water) or 1-diphenyl-methyl-4-[(2-(4-methylphenyl)-5-methylimidazol-4-yl)methyl]-pip erazine trihydrochloride at doses of 5, 15, or 30 mg/kg p.o. Fifteen minutes post-drug, the animals were saline loaded (30 ml/kg, p.o. 0.9% sodium chloride) and placed individually in metabolism cages. Urine was collected at 1, 3and 6 hour intervals post-dose. Urine volumes were measured and sodium and potassium levels were determined by flame photometry. Differences between control and treated values were evaluated by one way analysis of variance. 1-diphenyl-methyl-4-[(2-(4-methylphenyl)-5-methylimidazol-4-yl)methyl]-pip erazine trihydrochloride (30 mg/kg, p.o.) produced significant (p<0.05) diuresis which was observed at 1 hour and 6 hours post-drug. The compound (30 mg/kg, p.o.) elicited a significant natriuretic effect at the 3 and 6 hour time periods. No significant kaliuretic effects were observed following compound administration.

______________________________________ Urine Volume (ml) Cumulative control 5 mg/kg 15 mg/kg 30 mg/kg time vehicle* p.o. p.o. p.o. ______________________________________ 1 hour.sup. 3.3 .+-. 2.7 5.7 .+-. 2.5 5.7 .+-. 4.4 6.5 .+-. 2.3 3 hours 7.3 .+-. 3.3 9.5 .+-. 3.6 9.8 .+-. 3.2 10.5 .+-. 2.5 6 hours 9.6 .+-. 3.9 11.8 .+-. 3.9 11.7 .+-. 3.3 14.6 .+-. 1.4 ______________________________________

______________________________________ Sodium ion (mEq) Cumulative control 5 mg/kg 15 mg/kg 30 mg/kg time vehicle* p.o. p.o. p.o. ______________________________________ 1 hour.sup. .06 .+-. .08 .07 .+-. .06 .12 .+-. .16 .15 .+-. .12 3 hours .28 .+-. .31 .39 .+-. .25 .44 .+-. .20 .79 .+-. .38 6 hours .55 .+-. .44 .73 .+-. .32 .68 .+-. .28 1.48 .+-. .24 ______________________________________

______________________________________ Potassium ion (mEq) Cumulative control 5 mg/kg 15 mg/kg 30 mg/kg time vehicle* p.o. p.o. p.o. ______________________________________ 1 hour.sup. .03 .+-. .03 .04 .+-. .03 .04 .+-. .05 .04 .+-. .03 3 hours .13 .+-. .09 .16 .+-. .09 .12 .+-. .06 .15 .+-. .08 6 hours .22 .+-. .12 .26 .+-. .12 .20 .+-. .08 .27 .+-. .06 ______________________________________

EXAMPLE 17

Irritable Bowel Syndrome

The test used is a modification of the method of Macht and Barba-Gose, J. Amer. Pharm. Assoc., 20, 558 (1931), which traces the transit of a charcoal meal through the intestine as an index of transit time. In the present model, intestinal transit in conscious mice (15-20 g) was accelerated with an oral dose of barium chloride (300 mg/kg) administered at the same time as the charcoal meal. The animals were sacrificed 10 minutes later and the distance travelled by the charcoal measured. 1-diphenyl-methyl-4-[(2-(4-methylphenyl)-5-methylimidazol-4-yl)methyl]-pip erazine trihydrochloride was given as a 15 minute oral pre-treatment and its effect on non-stimulated or barium-stimulated intestinal transit of the charcoal meal was calculated. The results were expressed as inhibition percentage of the total transit induced by Ba.sup.+2, and not as the inhibition percentage of the portion representing the Ba.sup.+2 effect and are shown in the below table.

______________________________________ Dose 15 min % Change % Inhibition % Inhibition mg/kg p.o. Ba.sup.+2 of Ba.sup.+2 effect Normal Transit ______________________________________ 5 +93% +14% -19.3% 25 +93% -30.4% -28.7% 60 +93% -31.7% -16.1% ______________________________________

While the present invention has been described with reference to the specific embodiments thereof, it should be understood by those skilled in the art that various changes may be made and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process step or steps, to the objective, spirit and scope of the present invention. All such modifications are intended to be within the scope of the claims appended hereto.

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge