Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Plant Physiology and Biochemistry 2013-Feb

Arsenic effect on the model crop symbiosis Bradyrhizobium-soybean.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Melina A Talano
Romina B Cejas
Paola S González
Elizabeth Agostini

Ključne riječi

Sažetak

Soybean (Glycine max) is often being cultivated in soils with moderate to high arsenic (As) concentrations or under irrigation with As contaminated groundwater. The purpose of this study was to determine the effect of As on soybean germination, development and nodulation in soybean-Bradyrhizobium japonicum E109 symbiosis, as a first-step approach to evaluate the impact of As on soybean production. Semi-hydroponic assays were conducted using soybean seedlings inoculated and non-inoculated with B. japonicum E109 and treated with arsenate or arsenite. Soybean germination and development, at early stage of growth, were significantly reduced from 10 μM arsenate or arsenite. This also was seen for soybean seedlings inoculated with B. japonicum mainly with arsenite where, in addition, the number of effective nodules was reduced, despite that the microorganism tolerated the metalloid. This minor nodulation could be due to a reduced motility (swarming and swimming) of the microorganism in presence of As. Arsenic concentration in roots was about 250-times higher than in shoots. Transference coefficient values indicated that As translocation to aerial parts was low and As accumulated mainly in roots, without significant differences between inoculated and non-inoculated plants. The presence of As restricted soybean-B. japonicum symbiosis and hence, the efficiency of most used commercial inoculants for soybean. Thus, water and/or soils containing As would negatively impact on soybean production, even in plants inoculated with B. japonicum E109.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge