Innate immune defences in the human uterus during pregnancy.
Ključne riječi
Sažetak
The prevention of uterine infection is critical to appropriate fetal development and term delivery. The innate immune system is one component of the uterine environment and has a role in prevention of uterine infection. Natural antimicrobials are innate immune molecules with anti-bacterial, anti-viral and anti-fungal activity. We discuss two groups of natural antimicrobials in relation to pregnancy: (i) the defensins; and (ii) the whey acidic protein motif containing proteins, secretory leukocyte protease inhibitor (SLPI) and elafin. Human beta-defensins (HBD) 1-3 are expressed by placental and chorion trophoblast, amnion epithelium and decidua in term and preterm pregnancy. Elafin shows a similar pattern of localisation while SLPI is produced only by amnion epithelium and decidua. Evidence suggests that there is aberrant production of some natural antimicrobials in pathologic conditions of pregnancy. In preterm premature rupture of membranes (PPROM) levels of SLPI and elafin are reduced in amniotic fluid and fetal membranes, respectively. Elafin and HBD3 increase in chorioamnionitis and levels of the alpha-defensins, HNP1-3, increase in maternal plasma and amniotic fluid in women affected by microbial invasion of the uterus. In vitro culture studies have suggested a mechanism for increased production of natural antimicrobials in chorioamnionitis. Elafin, SLPI, HBD2 and 3 are all upregulated by inflammatory molecules in cells derived from gestational tissues. In summary, production of natural antimicrobials at key sites within the pregnant uterus suggests an important role in prevention of uterine infection during pregnancy and labour. Aberrant production of these molecules in PPROM and chorioamnionitis suggests that they also have a role in pathologic conditions. In particular, upregulation of these molecules by inflammatory molecules present in chorioamnionitis will ensure a robust response to infection.