Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
Cancer Letters 2001-Feb

Plasma hyaluronidase (Hyal-1) promotes tumor cell cycling.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
G Lin
R Stern

Ključne riječi

Sažetak

Paradoxically, both hyaluronan (HA) and hyaluronidase are involved in malignant transformation and cancer progression. Their mechanisms of action, given the apparent disparities, are not understood. In many malignancies, levels of HA correlate with metastatic behavior while hyaluronidases suppress malignant progression. Hyal-1, product of one of six paralogous hyaluronidase-like sequences, is the predominant circulating hyaluronidase. HYAL1, the gene that codes for Hyal-1, is located on chromosome 3p21.3, a region containing a tumor suppressor gene. Loss of HYAL1 often correlates with tumor progression, particularly in tobacco-related cancers. In other malignancies, however, hyaluronidase functions as a tumor promoter. Testicular hyaluronidase (PH-20), used as an adjuvant in chemotherapy, is assumed to enhance drug permeability. By an unknown mechanism, hyaluronidases recruit tumor cells back into the cycling pool, making these malignancies more sensitive to chemotherapeutic drugs. Such contradictory observations might be resolved by assuming that HA and hyaluronidase are required at different times in the multiple steps that lead to malignant transformation. We have undertaken a systematic investigation of their roles in cancer progression. Here, we investigate the effect of Hyal-1 expression on cell cycle kinetics. A tumor cell line was constructed with an ecdysone-inducible promoter located upstream from the cDNA of HYAL1. Fluorescent-activated cell sorting was used to monitor cell cycle kinetics following Hyal-1 induction. Enhanced cell cycling was observed, with a 13.6% increase in S phase and 9.6% decrease in G(1)/G(0) phase cells.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge