Suppression of human breast cancer cell metastasis by coptisine in vitro.
Ključne riječi
Sažetak
BACKGROUND
Coptisine, an isoquinoline alkaloid extracted from Coptidis rhizoma, has many biological activities such as antidiabetic, antimicrobial and antiviral actions. However, whether coptisine exerts anti-cancer metastasis effects remains unknown.
METHODS
Effects of coptisine on highly metastatic human breast cancer cell MDA-MB-231 proliferation were evaluated by trypan blue assay and on cell adhesion, migration and invasion by gelatin adhesion, wound-healing and matrigel invasion chamber assays, respectively. Expression of two matrix metalloproteinases (MMPs), MMP-9, MMP-2 and their specific inhibitors tissue inhibitor of metalloproteinase 1 (TIMP-1) and tissue inhibitor of metalloproteinase 2 (TIMP-2) were analyzed by RT-PCR.
RESULTS
Coptisine obviously inhibited adhesion to an ECM-coated substrate, wound healing migration, and invasion through the matrigel in MDA-MB-231 breast cancer cells. RT-PCR revealed that coptisine reduced the expression of the ECM degradation-associated gene MMP-9 at the mRNA level, and the expression of TIMP-1 was up-regulated in MDA-MB-231 cells, while the expression of MMP-2 and its specific inhibitor TIMP-2 was not affected.
CONCLUSIONS
Taken together, our data showed that coptisine suppressed adhesion, migration and invasion of MDA-MB-231 breast cancer cells in vitro, the down-regulation of MMP-9 in combination with the increase of TIMP-1 possibly contributing to the anti-metastatic function. Coptisine might be a potential drug candidate for breast cancer therapy.