Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
IBRO Reports 2017-Jun

TBI-induced nociceptive sensitization is regulated by histone acetylation.

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
De-Yong Liang
Peyman Sahbaie
Yuan Sun
Karen-Amanda Irvine
Xiaoyou Shi
Anders Meidahl
Peng Liu
Tian-Zhi Guo
David C Yeomans
J David Clark

Ključne riječi

Sažetak

Chronic pain after traumatic brain injury (TBI) is very common, but the mechanisms linking TBI to pain and the pain-related interactions of TBI with peripheral injuries are poorly understood. In these studies we pursued the hypothesis that TBI pain sensitization is associated with histone acetylation in the rat lateral fluid percussion model. Some animals received hindpaw incisions in addition to TBI to mimic polytrauma. Neuropathological analysis of brain tissue from sham and TBI animals revealed evidence of bleeding, breakdown of the blood brain barrier, in the cortex, hippocampus, thalamus and other structures related to pain signal processing. Mechanical allodynia was measured in these animals for up to eight weeks post-injury. Inhibitors of histone acetyltransferase (HAT) and histone deacetylase (HDAC) were used to probe the role of histone acetylation in such pain processing. We followed serum markers including glial fibrillary acidic protein (GFAP), neuron-specific enolase 2 (NSE) myelin basic protein (MBP) and S100β to gauge TBI injury severity. Our results showed that TBI caused mechanical allodynia in the hindpaws of the rats lasting several weeks. Hindpaws contralateral to TBI showed more rapid and profound sensitization than ipsilateral hindpaws. The inhibition of HAT using curcumin 50 mg/kg s.c reduced mechanical sensitization while the HDAC inhibitor suberoylanilide hydroxamic acid 50 mg/kg i.p. prolonged sensitization in the TBI rats. Immunohistochemical analyses of spinal cord tissue localized changes in the level of acetylation of the H3K9 histone mark to dorsal horn neurons. Taken together, these findings demonstrate that TBI induces sustained nociceptive sensitization, and changes in spinal neuronal histone proteins may play an important role.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge