Albanian
Arabic
Armenian
Azerbaijani
Belarusian
Bengali
Bosnian
Catalan
Czech
Danish
Deutsch
Dutch
English
Estonian
Finnish
Français
Greek
Haitian Creole
Hebrew
Hindi
Hungarian
Icelandic
Indonesian
Irish
Italian
Japanese
Korean
Latvian
Lithuanian
Macedonian
Mongolian
Norwegian
Persian
Polish
Portuguese
Romanian
Russian
Serbian
Slovak
Slovenian
Spanish
Swahili
Swedish
Turkish
Ukrainian
Vietnamese
Български
中文(简体)
中文(繁體)
AMB Express 2020-Aug

Rhein laden pH-responsive polymeric nanoparticles for treatment of osteoarthritis

Samo registrirani korisnici mogu prevoditi članke
Prijava Registriraj se
Veza se sprema u međuspremnik
Bo Hu
Feng Gao
Chunbao Li
Boqing Zhang
Mingyang An
Ming Lu
Yufeng Liu
Yujie Liu

Ključne riječi

Sažetak

Osteoarthritis (OA) is a condition associated with severe inflammation, cartilage destruction and degeneration of joints. Rhein (Rh) is an effective anti-inflammatory drug with proven efficacy in in-vitro and in-vivo models. pH sensitive Rh and NH4HCO3 laden poly (lactic-co-glycolic acid (PLGA) nanoparticles (NPs) (Rh-PLGA-NPs@NH4) are developed for an effective treatment of OA. The Rh-PLGA-NPs@NH4 are prepared along with Rh-PLGA-NPs as a control by double emulsion method. Rh-PLGA-NPs@NH4 was characterized for their size, shape, morphology and encapsulation efficiency (EE). The effect of pH on release of Rh from Rh-PLGA-NPs@NH4 was studied at different pH. Further, the cytotoxicity effect of Rh-PLGA-NPs@NH4 on THP-1 cells were evaluated. Anti-inflammatory efficacy was evaluated on LPS stimulated THP-1 cells and the release of pro-inflammatory cytokines was evaluated and compared with control. The size of Rh-PLGA-NPs@NH4 and Rh-PLGA-NPs was found to be 190.7 ± 1.2 nm and 134.6 ± 2.4 nm respectively with poly dispersity (PDI) 0.14 and 0.15. The zeta potential of Rh-PLGA-NPs@NH4 was found to be -22 ± 1.12 mV. Rh-PLGA-NPs@NH4 were uniform, smooth and spherical shape as confirmed using electron microscopy analysis. Rh-PLGA-NPs@NH4 release the Rh more effectively in the low pH of synovial fluid environment (SFE). Rh-PLGA-NPs@NH4 also significantly affect inflammatory cytokines TNF-α and IL-1β and reduced their release in LPS stimulated THP-1 cells. Reactive oxygen species (ROS), a mediator responsible for the cartilage collapse was also found to be reduced. Results proposes that Rh-PLGA-NPs could provide therapeutic solution to those patients who suffer from chronic joint ailments by reducing the progression of OA.

Keywords: Anti-inflammatory; Drug delivery; Nano-carriers; PLGA; pH-sensitive.

Pridružite se našoj
facebook stranici

Najkompletnija baza ljekovitog bilja potpomognuta znanošću

  • Radi na 55 jezika
  • Biljni lijekovi potpomognuti znanošću
  • Prepoznavanje bilja slikom
  • Interaktivna GPS karta - označite bilje na mjestu (uskoro)
  • Pročitajte znanstvene publikacije povezane s vašom pretragom
  • Pretražite ljekovito bilje po učincima
  • Organizirajte svoje interese i budite u toku s istraživanjem vijesti, kliničkim ispitivanjima i patentima

Upišite simptom ili bolest i pročitajte o biljkama koje bi mogle pomoći, unesite travu i pogledajte bolesti i simptome protiv kojih se koristi.
* Svi podaci temelje se na objavljenim znanstvenim istraživanjima

Google Play badgeApp Store badge