Stranica 1 iz 74 rezultatima
Bladder cancer is one of the common human cancers and also has a very high recurrence rate. There is a great need for agents capable of inhibiting bladder cancer development and recurrence. Here, we report that allyl isothiocyanate (AITC), an ingredient of many common cruciferous vegetables,
It was reported recently that allyl isothiocyanate (AITC) could inhibit various types of cancer cell growth. In the present study, we further investigated whether AITC could inhibit the growth of human breast cancer cells. Unexpectedly, we found that AITC did not inhibit, rather slightly promoted,
Allyl isothiocyanate (AITC), which occurs in many common cruciferous vegetables, was recently shown to be selectively delivered to bladder cancer tissues through urinary excretion and to inhibit bladder cancer development in rats. The present investigation was designed to test the hypothesis that
Enzootic bovine haematuria, caused by long-term ingestion of ferns, is a chronic disease of hill cattle characterized by neoplastic lesions in the urinary bladder. Objectives of this study were to investigate the toxicity potential of long-term feeding of the fern Dryopteris nigropalaceae and effect
Naturally occurring allyl isothiocyanate (AITC) was recently shown to be selectively delivered to bladder cancer tissue via urinary excretion and to inhibit bladder cancer growth and muscle invasion in an animal model. AITC is excreted in urine mainly as N-acetyl-S-(N-allylthiocarbamoyl)cysteine,
Allyl isothiocyanate (AITC) is present in plants of the cruciferous family and is abundant in mustard seed. Due to its high bioavailability in urine after ingestion, AITC has been considered a promising antineoplastic agent against bladder cancer. Because TP53 mutations are the most common
Allyl isothiocyanate (AITC) occurs in cruciferous vegetables that are commonly consumed by humans and has been shown to inhibit urinary bladder cancer growth and progression in previous preclinical studies. However, AITC does not significantly modulate cyclooxygenase-2 (Cox-2), whose oncogenic
Allyl isothiocyanate (AITC), a dietary phytochemical in some cruciferous vegetables, exhibits promising anticancer activities in many cancer models. However, previous data showed AITC to have a biphasic effect on cell viability, DNA damage and migration in human hepatoma HepG2 cells. Moreover, in a
Natural compounds hold great promise for combating antibiotic resistance, the failure to control some diseases, the emergence of new diseases and the toxicity of some contemporary medical products. Allyl isothiocyanate (AITC), which is abundant in cruciferous vegetables and mustard seeds and is
Isothiocyanates (ITCs) occur in many cruciferous vegetables. These compounds, which have significant anticancer actions, can induce apoptosis in different human cancer cell lines. In the present study, we investigated if allyl isothiocyanate (AITC) would induce toxicity in human breast cancer MCF-7
Allyl isothiocyanate (AITC), a volatile and water-insoluble compound present in several cruciferous vegetables, has been shown to possess several biological qualities such as anti-bacterial, anti-fungal, and anti-cancer activity. In this study, water-soluble allyl isothiocyanate Background/purpose: Cisplatin-resistant oral cancer is clinically difficult to manage and the dose-dependent toxicities of cisplatin has been widely concerned. Allyl isothiocyanate (AITC), known as mustard oil, is a plant-derived compound
Allyl isothiocyanate (AITC), which occurs in many common cruciferous vegetables, is widely and often frequently consumed by humans. Besides antimicrobial activity against a wide spectrum of pathogens, it showed anticancer activity in both cultured cancer cells and animal models, although the
Allyl isothiocyanate (AITC) occurs in many commonly consumed cruciferous vegetables and exhibits significant anti-cancer activities. Available data suggest that it is particularly promising for bladder cancer prevention and/or treatment. Here, we show that AITC arrests human bladder cancer cells in