6 rezultatima
beta-Cyanoalanine synthase, which catalyzes the reaction between cysteine and HCN to form beta-cyanoalanine and H(2)S, was assayed in leaf tissues from cyanogenic (Sorghum bicolor x Sorghum sudanense [sorghum]) and noncyanogenic (Pisum sativum [pea], Zea mays [maize], and Allium porrum [leek])
The auxin indole-3-acetic acid (IAA), which is essential for plant growth and development, is suggested to be synthesized via several redundant pathways. In maize (Zea mays), the nitrilase ZmNIT2 is expressed in auxin-synthesizing tissues and efficiently hydrolyses indole-3-acetonitrile to IAA.
UNASSIGNED
Our data present H 2 S in a new role, serving as a multi-faceted transducer to different response mechanisms during NO-induced acquisition of tolerance to flooding-induced hypoxia in maize seedling roots. Nitric oxide (NO), serving as a secondary messenger, modulates physiological
Excised maize (Zea mays L.) root tips were used to monitor the effects of prolonged glucose starvation on nitrogen metabolism. Following root-tip excision, sugar content was rapidly exhausted, and protein content declined to 40 and 8% of its initial value after 96 and 192 h, respectively. During
An asparagine synthetase which is active with either glutamine or NH 4 (+) has been found in maize (Zea mays L.) roots. Unlike the enzyme obtained from legume cotyledons, the maize-root enzyme is only slightly more efficient with glutamine (Km, 1.0 mM) than with NH 4 (+) (Km, 2.0-3.0 mM). The
OBJECTIVE
Ferro-cyanide is one of the commonly found species at cyanide-contaminated soils and groundwater. Unlike botanical metabolism of KCN via the β-cyanoalanine pathway, processes involved in the plant-mediated assimilation of ferro-cyanide are still unclear. The objective of this study was to