Stranica 1 iz 38 rezultatima
Natural products comprise valuable sources for new antiparasitic drugs. Here we tested the effects of a novel β-lapachone derivative on Trypanosoma cruzi parasite survival and proliferation and used microscopy and cytometry techniques to approach the mechanism(s) underlying parasite death. The
BACKGROUND
There are two fundamental forms of cell death: apoptosis and necrosis. Molecular studies of cell death thus far favor a model in which apoptosis and necrosis share very few molecular regulators. It appears that apoptotic processes triggered by a variety of stimuli converge on the
β-Lapachone activates multiple cell death mechanisms including apoptosis, autophagy and necrotic cell death in cancer cells. In this study, we investigated β-lapachone-induced cell death and the underlying mechanisms in human hepatocellular carcinoma SK-Hep1 cells. β-Lapachone markedly induced cell
Beta-lapachone, the product of a tree from South America, is known to exhibit various pharmacologic properties, the mechanisms of which are poorly understood. In the present report, we examined the effect of beta-lapachone on the tumor necrosis factor (TNF)-induced activation of the nuclear
Improving patient outcome by personalized therapy involves a thorough understanding of an agent's mechanism of action. β-Lapachone (clinical forms, Arq501/Arq761) has been developed to exploit dramatic cancer-specific elevations in the phase II detoxifying enzyme NAD(P)H:quinone oxidoreductase
BACKGROUND
NAD(P)H:quinone oxidoreductase 1 (NQO1) is a two-electron oxidoreductase expressed in multiple tumour types. ARQ 761 is a β-lapachone (β-lap) analogue that exploits the unique elevation of NQO1 found in solid tumours to cause tumour-specific cell death.
METHODS
We performed a 3+3 dose
β-LAPachone (B-LAP) is a naphthoquinone that possesses antioxidant properties. In the present investigation, the protective effect of B-LAP against doxorubicin (DOX)-induced cardiotoxicity was examined in mice. Thirty-five mice were divided into 5 groups; control group, B-LAP (5 mg/kg) group, DOX
beta-Lapachone (LAPA) is a chemotherapeutic agent that can inhibit the expression of nitric oxide (NO) and inducible NO synthase (iNOS) in alveolar macrophages. No other information on the agent's anti-inflammatory activity has been reported. In the present study, we investigated the molecular
AMP-activated protein kinase (AMPK), a crucial regulator of energy metabolic homeostasis, is suggested to regulate inflammatory responses, but its precise mechanisms are not fully understood. It has been reported that pharmacological activation of AMPK induces heme oxygenase-1 (HO-1) expression.
OBJECTIVE
AMP-activated protein kinase (AMPK) is suggested to exert cytoprotective and anti-inflammatory effects in endothelial cells, but the precise mechanisms are not fully understood. It has been reported that pharmacological activation of AMPK induces endothelial heme oxygenase-1 (HO-1)
In this study, we investigated the effects of β-lapachone (β-lap) on the production of cytokines in C57BL/6 mice. The culture supernatants of splenocytes exposed to β-lap plus lipopolysaccharide or concanavalin A (Con A) were harvested to determine Th1 (tumor necrosis factor-α, interferon-γ,
beta-Lapachone, a novel anticancer drug, induces various human carcinoma cells to undergo apoptotic cell death. However, we report here that, in human osteocarcinoma (U2-OS) cells, beta-lapachone induces necrosis rather than apoptosis. beta-Lapachone-induced necrotic cell death in U2-OS cells was
Beta-lapachone and camptothecin are structurally unrelated agents thought to inhibit topoisomerase-I activity through distinct mechanisms. We find that beta-lapachone is much more potent than camptothecin in inducing acute cytotoxic effects on human malignant glioma cells. Acute cytotoxicity induced
In this study, the cytotoxicity, genotoxicity and early ROS generation of 2,2-dimethyl-(3H)-3-(N-3'-nitrophenylamino)naphtho[1,2-b]furan-4,5-dione (QPhNO(2)) were investigated and compared with those of its precursor, nor-beta-lapachone (nor-beta), with the main goal of proposing a mechanism of
beta-Lapachone, a 1,2-naphthoquinone, is a novel chemotherapeutic agent. It has been shown to be capable of suppressing inducible nitric oxide synthase expression and function in rat alveolar macrophages. The authors further performed experiments to examine the molecular mechanism of beta-lapachone