6 rezultatima
Chloroplasts alter their distribution within plant cells depending on the external light conditions. Myosin inhibitors 2,3-butanedione monoxime (BDM), N-ethylmaleimide (NEM), and 1-(5-iodonaphthalene-1-sulfonyl)-1H-hexahydro-1,4-diazepine hydrochloride (ML-7) were used to study the possible role of
OBJECTIVE
Reactive oxygen species (ROS) are involved in triggering cell death. To visualize mitochondrial behaviour under ROS stress, transgenic arabidopsis plants possessing mitochondrial-targeted GFP (S65T) were studied.
METHODS
Arabidopsis leaves were treated with ROS and ROS-inducing chemicals
Plant morphogenesis depends on accurate control over growth anisotropy. To learn to what extent the control of growth anisotropy depends on cellular metabolism, we surveyed the response of growing roots to a range of inhibitors. Seedlings of Arabidopsis thaliana L. (Heynh), 7-8 d old, were
Expression-based techniques using recombinant actin-binding proteins (ABPs) have been developed as advantageous means of visualising actin filaments. As actin function is linked to the movement of cellular cargoes, and overexpression of ABPs may compete with endogenous cytoskeletal proteins, such as
We have investigated changes in the distribution of peroxisomes through the cell cycle in onion ( Allium cepa L.) root meristem cells with immunofluorescence and electron microscopy, and in leek ( Allium porrum L.) epidermal cells with immunofluorescence and peroxisomal-targeted green fluorescent
Here we examine peroxisomes in living plant cells using transgenic Arabidopsis thaliana plants expressing the green fluorescent protein (GFP) fused to the peroxisome targeting signal 1 (PTS1). Using time-lapse laser scanning confocal microscopy we find that plant peroxisomes exhibit fast directional