8 rezultatima
The effects of cannabinoids on ketogenesis in primary cultures of rat astrocytes were studied. Delta9-Tetrahydrocannabinol (THC), the major active component of marijuana, produced a malonyl-CoA-independent stimulation of carnitine palmitoyltransferase I (CPT-I) and ketogenesis from [14C]palmitate.
Hepatic glucose production is promoted by forkhead box O1 (FoxO1) under conditions of insulin resistance. The overactivity of cannabinoid receptor type 1 (CB1R) partly causes increased liver fat deposits and metabolic dysfunction in obese rodents by decreasing mitochondrial function. The aim of the
CB1 (also known as CNR1), a main receptor for cannabinoids acting at PPARs, can enhance fat deposition. Carnitine palmitoyltransferase-1 (CPT1), an enzyme responsible for the transport of long-chain fatty acids for β-oxidation, is closely related to fat deposition. Whether CB1 can regulate
A growing number of evidences accumulated about critical metabolic role of cannabinoid type 1 receptor (CB1), carnitine palmitoyltransferase-1 (CPT1) and peroxisome proliferator-activated receptors (PPARs) in some peripheral tissues, including adipose tissue, liver, skeletal muscle and heart. To
BACKGROUND
Cannabinoid receptors CB1 and CB2 are expressed in the liver, but their regulation in fatty hepatocytes is poorly documented. The aim of this study was to investigate the effects of selective CB1 or CB2 agonists on the expression of key regulators of lipid metabolism.
METHODS
We used an
The aim of this study was to investigate the effect of rimonabant treatment on hepatic mitochondrial function in rats fed a high-fat diet. Sprague-Dawley rats fed a high-fat diet (35% lard) for 13 wk were treated with rimonabant (10 mg·kg(-1)·day(-1)) during the last 3 wk and matched with pair-fed
Emerging evidence suggests that cannabinoids play an important role in the modulation of fatty liver, which appears to be mediated via activation of cannabinoid receptors. Steatogenic agents such as ethanol and high-fat diet can upregulate the activity of cannabinoid 1 (CB1) receptors via increasing
Evidence suggests that activation of the endocannabinoid system offers cardioprotection. Aberrant energy production by impaired mitochondria purportedly contributes to various aspects of cardiovascular disease. We investigated whether cannabinoid (CB) receptor activation would attenuate