7 rezultatima
Catalpa ovata (Bignoniaceae) is widely distributed throughout Korea, China, and Japan. This study investigated the anti-inflammatory effects of catalpalactone isolated from C. ovata in lipopolysaccharide (LPS)-induced RAW264.7 cells. Catalpalactone significantly inhibited nitric oxide
Catalpa bignonioides Walt. (Bignoniaceae) is a species that belongs to a tropical family but has been introduced in many countries as ornamental. Although this plant is consumed by indigenous cultures of South America for medical uses, experimental studies of the biological properties of Catalpa
BACKGROUND
The stem bark of Catalpa ovata has been used as a traditional herbal medicine for the treatment of various inflammatory diseases such as itching and scabies.
OBJECTIVE
In the present study, we investigated the anti-AD effects of Catalpa ovata stem bark on Dermatophagoides farinae-induced
In order to validate the use of the stem bark of Catalpa ovata G. Don. (Bignoniaceae) as an anti-inflammatory drug in the traditional Korean medicine, we have investigated the effects of the methanol extract of this folk medicine on the productions of tumor necrosis factor-alpha (TNF-alpha) and
Certain irinoid-producing plants have been used as herbal anti-inflammatory remedies. Here we evaluated whether catalposide (CATP), a single compound isolated from irinoid-producing plant Catalpa ovata, has a potential for preventing or ameliorating diseases characterized by mucosal inflammation.
Catalposide, the major iridoid glycoside isolated from the stem bark of Catalpa ovata G. Don (Bignoniaceae) has been shown to possess anti-microbial, anti-tumoral, and anti-inflammatory properties. Heme oxygenase-1 (HO-1) is a stress response protein and is known to play a protective role against
Catalposide, an active component of Veronica species such as Catalpa ovata and Pseudolysimachion lingifolium, exhibits anti-inflammatory, antinociceptic, anti-oxidant, hepatoprotective, and cytostatic activities. We characterized the in vitro metabolic pathways of catalposide to