11 rezultatima
The rapidly increasing production of engineered nanoparticles has raised questions regarding their environmental impact and their mobility to overcome biological important barriers. Nanoparticles were found to cross different mammalian barriers, which is summarized under the term translocation. The
Lanthanoids (Ln) were demonstrated to improve chlorophyll formation and the growth of plants. But the mechanism of the fact that Ln promotes chlorophyll biosynthesis of plants is poorly understood. The main aim of the study was to determine Ln effects in chlorophyll formation of maize under
OBJECTIVE
Plant growth responses to the rare earth elements lanthanum (La) and cerium (Ce) have been reported, but little is known about the effects of these two elements on plant mineral nutrition.
METHODS
Corn (Zea mays 'Hycorn 82') and mungbean (Vigna radiata 'Berken') were grown in continuous
Rare earth elements can promote photosynthesis, but their mechanisms are still poorly understood under magnesium deficiency. The present study was designed to determine the role of cerium in magnesium-deficient maize plants. Maize was cultivated in Hoagland's solution added with cerium with and
Magnesium (Mg) deficiency has been reported to affect plant photosynthesis and growth, and cerium (Ce) was considered to be able to improve plant growth. However, the mechanisms of Mg deficiency and Ce on plant growth remain poorly understood. The main aim of this work is to identify whether or not
It had been proved that manganese (Mn) deficiency could damage the photosynthesis of plants, and lanthanides could improve photosynthesis and greatly promote plant growth. However, the mechanisms on how Mn deficiency and cerium (Ce) addition affects the photosynthetic carbon reaction of plants under
In this study, the phytotoxicity of seven metal oxide nanoparticles(NPs)-titanium dioxide (nTiO₂), silicon dioxide (nSiO₂), cerium dioxide (nCeO₂), magnetite (nFe₃O₄), aluminum oxide (nAl₂O₃), zinc oxide (nZnO) and copper oxide (nCuO)-was assessed on two agriculturally significant crop plants (maize
In maize (Zea mays L.) cells, the sources of apoplast hydrogen peroxide (H(2)O(2)) induced by abscisic acid (ABA) has been proposed. Histochemical and cytochemical localization of ABA-induced H(2)O(2) production in leaves of maize was examined, using 3, 3-diaminobenzidine (DAB) and cerium chloride
Fate, transport, and possible toxicity of cerium oxide nanoparticles (nanoceria, CeO(2)) are still unknown. In this study, seeds of alfalfa (Medicago sativa), corn (Zea mays), cucumber (Cucumis sativus), and tomato (Lycopersicon esculentum) were treated with nanoceria at 0-4000 mg L(-1). The cerium
Previous work on the adaptation of maize (Zea mays L.) primary root growth to water stress showed that cell elongation is maintained in the apical region of the growth zone but progressively inhibited further from the apex. Cell wall proteomic analysis suggested that levels of apoplastic reactive
The production and role of reactive oxygen species (ROS) in the expanding zone of maize (Zea mays) leaf blades were investigated. ROS release along the leaf blade was evaluated by embedding intact seedlings in 2',7'-dichlorofluorescein-containing agar and examining the distribution of