8 rezultatima
Coniferaldehyde and NADPH when incubated with microsomes isolated from developing xylem of Pinus strobus yielded coniferyl alcohol and dihydroconiferyl alcohol in vitro. D-(+)-Pinitol was also found to be a microsomal constituent. Endogenous E-coniferyl alcohol content, quantified in dormant buds,
A phenylpropenal double-bond reductase (PPDBR) was obtained from cell suspension cultures of loblolly pine (Pinus taeda L.). Following trypsin digestion and amino acid sequencing, the cDNA encoding this protein was subsequently cloned, with the functional recombinant protein expressed in Escherichia
Cinnamyl alcohol dehydrogenase (CAD) activity is deficient in loblolly pine (Pinus taeda L.) harboring a mutated allele of the cad gene (cad-n1). We compared lignin structure of CAD-deficient and wild-type pines, both types segregating within full-sib families obtained by controlled crosses. The
Solid-state 13C nuclear magnetic resonance (NMR) spectroscopy was applied to intact and isolated loblolly pine wood samples to identify potential structural changes induced by tree age, milling, lignin extraction, or naturally occurring mutations. Special attention was paid to ketone and aldehyde as
Xylem-derived Pinus radiata cell cultures, which can be induced to differentiate tracheary elements (TEs), were transformed with an RNAi construct designed to silence cinnamyl alcohol dehydrogenase (CAD), an enzyme involved in the biosynthesis of monolignols. Quantitative enzymatic CAD measurements
Severe suppression of 4-coumarate-coenzyme A ligase (4CL) in the coniferous gymnosperm Pinus radiata substantially affected plant phenotype and resulted in dwarfed plants with a "bonsai tree-like" appearance. Microscopic analyses of stem sections from 2-year-old plants revealed substantial
The Pd/C-catalysed hydrogenolysis of in-situ and isolated lignins from Pinus radiata wood was investigated to gain a more complete understanding of the factors affecting yield and composition of the hydrogenolysis products. Such hydrogenolysis products could potentially be refined into aromatic
Novel lignin is formed in a mutant loblolly pine (Pinus taeda L.) severely depleted in cinnamyl alcohol dehydrogenase (E.C. 1.1.1.195), which converts coniferaldehyde to coniferyl alcohol, the primary lignin precursor in pines. Dihydroconiferyl alcohol, a monomer not normally associated with the