Stranica 1 iz 29 rezultatima
A simple and selective method was developed for the simultaneous determination of tetrandrine and fangchinoline in herbal medicine by HPLC with electrochemical detection (ECD) on a bare glassy carbon electrode. The HPLC separation and ECD conditions have been optimized. The separation was carried
A rapid, sensitive, and reliable analytical method based on ultra high performance liquid chromatography with tandem mass spectrometry has been developed for the simultaneous determination of fangchinoline and tetrandrine in rat plasma. Plasma samples were pretreated by protein precipitation with
The anti-hyperglycemic action of Stephania tetrandra Radix (Stephania) is potentiated by Astragalus membranaceus BUNGE Radix (Astragali) in streptozotocin (STZ)-diabetic ddY mice (Tsutsumi et al., Biol. Pharm. Bull., 26, 313 (2003)). Fangchinoline (0.3-3 mg/kg), a main constituent of Stephania,
Previous studies have demonstrated that the orphan nuclear receptor NR4A1 is overexpressed in human pancreatic cancer and antagonizing this receptor promotes apoptosis and inhibits pancreatic cancer cells and tumor growth. In the present study, we identified fangchinoline, a
Tetrandrine (TET) and fangchinoline (FAN) are two major components of the radix of Stephania tetrandra. The effects of TET and FAN on human platelet aggregation and formation of thromboxane (TX) B2, a stable metabolite of TXA2, were examined in the aspect of platelet aggregation. TET and FAN
Fangchinoline (FAN), a non-specific calcium antagonist, is a major alkaloidal component of the creeper Stephania tetrandra S. Moore (or fenfangji). It has been shown to possess antagonistic activity on morphine-induced antinociception in mice. This study was undertaken to assess the antagonistic
Problems with identification and labeling of medicinal plants, as well as substitution/adulteration of non-toxic plants by toxic ones have previously led to cancer, renal failure and even deaths. The non-toxic Stephania tetrandra (Fangji) has been known to be substituted by Aristolochia fangchi
OBJECTIVE
To establish a new method for the determination of fangchinoline and tetrandrine in Stephania tetrandra and Fengtongan capsule by noanqueous capillary electrophoresis.
METHODS
Separation was carried out in an uncoated fused capillary (50 cm x 75 microm i.d.) with a running buffer
Fangchinoline (Fan) is a bioactive compound isolated from the Chinese herb Stephania tetrandra S. Moore (Fen Fang Ji). The aim of the present study was to investigate the effect of Fan on the proliferation of SPC-A-1 lung cancer cells, and to define the associated molecular mechanisms. Following
Kampo medicine, Stephania tetrandra Radix (Stephania) in Boi-ogi-to increases the blood insulin level and falls the blood glucose level in streptozotocin (STZ)-diabetic ddY mice. These actions of Stephania are potentiated by Astragalus membranaceus Bunge Radix (Astragali) in Boi-ogi-to (Liu et al.,
The overexpression of ABC transporters is a common reason for multidrug resistance (MDR) in cancer cells. In this study, we found that the isoquinoline alkaloids tetrandrine and fangchinoline from Stephania tetrandra showed a significant synergistic cytotoxic effect in MDR Caco-2 and CEM/ADR5000
Fangchinoline, an important compound in Stephania tetrandra S. Moore, as a novel antitumor agent, has been implicated in several types of cancers cells except gastric cancer. To investigate whether fangchinoline affects gastric cancer cells, we detected the signaling pathway by which fangchinoline
Fangchinoline, a bisbenzylisoquinoline alkaloid extracted from Stephania tetrandra S. Moore, is known to exert anti-cancer activity. A series of new fangchinoline derivatives have been synthesized and evaluated for their anti-cancer activity. In cell viability assay, these fangchinoline derivatives
Fangchinoline (FCL) is an active component isolated from the traditional medicinal plant Stephania tetrandra S. Moore, and has been reported to possess anti-cancer functions in several types of cancers; however, the effect of FCL on gastric cancer metastasis and its underlying molecular mechanisms
OBJECTIVE
Tetrandrine and Fangchinoline (Fcn) are two natural products that are found in Stephania tetrandra. Tetrandrine is a known anti-bladder cancer compound, but the effects of Fcn on bladder cancer have been previously unclear. In the present study, we focused on the anti-tumor effects of Fcn