Stranica 1 iz 30 rezultatima
BACKGROUND
This study aimed to evaluate the efficacy of combinations of steroidal alkaloids and conessine from the Thai medicinal plant Holarrhena antidysenterica with antibiotics against Pseudomonas aeruginosa strains possessing different efflux-pump-mediated multidrug-resistant (MDR) phenotypes in
OBJECTIVE
To evaluate in vitro antibacterial effectiveness of five medicinal plants used by an Indian aborigine, against 8 multidrug-resistant (MDR) enteropathogenic bacteria isolated from clinical samples of under-5 hospitalized children.
METHODS
Antibiotic sensitivity patterns of eight clinically
The methanolic extract and conessine isolated from the stem bark of Holarrhena floribunda (Hf) were tested for their antibacterial activities on Bacillus: Bacillus cereus, Bacillus subtilis, Bacillus megaterium and Bacillus stearothermophilus using the disc diffusion method. Phytochemical analysis
In search of broad-spectrum antibacterial activity from traditionally used Indian medicinal plants, 66 ethanolic plant extracts were screened against nine different bacteria. Of these, 39 extracts demonstrated activity against six or more test bacteria. Twelve extracts showing broad-spectrum
Holarrhena pubescens (syn. H. antidysenterica) (L.) WALL. stem bark was tested for antibacterial efficacy against Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus faecalis, Bacillus subtilis, Escherichia coli and Pseudomonas aeruginosa using the microdilution broth method as well as
The alkaloids from the ethanolic extract of H. antidysenterica seeds were evaluated for their antibacterial activity against clinical isolates of enteropathogenic Escherichia coli (EPEC) in vitro, and their antidiarrhoeal activity on castor oil-induced diarrhoea in rats, in vivo. The plasmid DNA,
Pestalotiopsis species were most dominant endophytic species isolated from four medicinal plants including Terminalia arjuna, Terminalia chebula, Azadirachta indica, and Holarrhena antidysenterica. Thirty Pestalotiopsis species isolated from different parts of the medicinal plants were selected for
OBJECTIVE
To investigate the efficacy of 17 ethnomedicinal plants belonging to Apocynaceae family used in combination with 16 conventional antibiotics against non-multidrug resistant-, multidrug resistant (MDR)-, and extensive drug resistant (XDR) Acinetobacter baumannii (A.
The global burden of bacterial infections is very high and has been exacerbated by increasing resistance to multiple antibiotics. Antibiotic resistance leads to failed treatment of infections, which can ultimately lead to death. To overcome antibiotic resistance, it is necessary to identify new
Two new steroidal alkaloids, isoconkuressine and N-formylconessimine, together with 6 known steroidal alkaloids including conkuressine, conessine, isoconessimine, conimine, conarrhimine, and funtudienine, were isolated from the seeds of Holarrhena antidysenteriaca Wall.ex A.DC. Their intrinsic
Drug-resistant Pseudomonas aeruginosa efflux pump extrudes antibiotics from cells for survival. Efflux pump inhibitor (EPI) thus becomes an interesting alternative to handle the drug-resistant bacteria. Conessine, a natural steroidal alkaloid from Holarrhena antidysenterica, previously
Emergence and spread of antibiotic-resistant Acinetobacter baumannii have become a major public health concern. This study was designed to investigate the efficacy of Holarrhena antidysenterica extract and its major steroidal alkaloid conessine as resistance-modifying agents (RMAs) on the
Bacterial adhesion is the first step in the sequence of events leading to infection. Previous data are available on the effect of Holarrhena antidysenterica on antidiarrhoeal and antibacterial action, but there is little information on the mechanism of action of the various aspects of EPEC-induced
BACKGROUND
Holarrhena floribunda is a plant of wide usage in the Togolese folk medicine. A previous ethnobotanical survey on the latex plants of the Maritime region of the country revealed that this plant was included in several recipes curing malaria and microbial infections. Therefore, this study
Increasing rates of infections caused by multidrug resistant Acinetobacter baumannii (MDRAB) and extensively drug resistant A. baumannii (XDRAB) have caused the need for searching alternative agents. The purposed of this project was to search plant-derived natural products that act as resistant