Stranica 1 iz 20 rezultatima
The aim of this study was to investigate the necrosis-avid agent hypericin as a potential indicator for determination of myocardial infarction (MI). Male Sprague-Dawley rats (n = 30) weighing 350 ± 20 g were subjected to acute reperfused MI. Animals were divided into four groups (n = 6), in which
OBJECTIVE
We determined whether sodium cholate (NaCh) could act as a solubilizing agent for the necrosis avid iodine-123-labeled hypericin ((123)I-Hyp) and investigated biodistribution and targetability of this formulation in rabbits with acute myocardial infarction (AMI).
METHODS
Solubility of
Identification of myocardial infarction (MI) by imaging is critical for clinical management of ischemic heart disease. Iodine-123-labeled hypericin (¹²³I-Hyp) is a new potent infarct avid agent. We sought to compare target selectivity and organ distribution between ¹²³I-Hyp and the myocardial
Hypericin (Hy) has shown great promise as a necrosis-avid agent in cancer imaging and therapy. Given the highly hydrophobic and π-conjugated planarity characteristics, Hy tends to form aggregates. To investigate the effect of aggregation on targeting biodistribution, nonaggregated formulation
Myocardial infarction (MI) leads to substantial morbidity and mortality around the world. Accurate assessment of myocardial viability is essential to assist therapies and improve patient outcomes. (131)I-hypericin dicarboxylic acid ((131)I-HDA) was synthesized and evaluated as a potential diagnostic
Hypericin (Hyp) is newly recognized as a necrosis avid agent, but its poor solubility imposes a great hindrance in clinical application. The aim of this paper was to explore sodium cholate (NaCh) as a potential solvent for Hyp and assess the targetability of (131)I-Hyp in rat necrosis models. Hyp
Necrotic myocardium imaging can provide great indicators of salvaged myocardial areas for clinical guidances to patients with myocardial infarction (MI). One of the key challenges in necrotic myocardium imaging however, is lack of ideal necrotic imaging tracers for exactly and timely depicting the
OBJECTIVE
The present animal experiments were conducted to evaluate radioiodinated Hypericin (Hyp) for its regional distribution as well as theranostic potentials.
METHODS
Rat models of reperfused liver infarction (RLI) and hepatic rhabdomyosarcoma (R1) were surgically induced. R1 models received
Hypericin has been widely studied as a potent photosensitizer for photodynamic therapy in both preclinical and clinical settings. Recently, hypericin has also been discovered to have a specific avidity for necrotic tissue. This affinity is also observed in a series of radiolabeled derivatives of
BACKGROUND
Necrosis avid tracer (123)I-hypericin ((123)I-HYP) enables hot-spot imaging on acute myocardial infarction (MI). We explored dual-isotope simultaneous acquisition single photon emission computed tomography/computed tomography (DISA-SPECT/CT) by using (123)I-HYP and standard
OBJECTIVE
To study whether formulation influences biodistribution, necrosis avidity and tumoricidal effects of the radioiodinated hypericin, a necrosis avid agent for a dual-targeting anticancer radiotherapy.
METHODS
Iodine-123- and 131-labeled hypericin ((123)I-Hyp and (131)I-Hyp) were prepared
OBJECTIVE
To study the effect of co-injecting unlabelled hypericin (Hyp) on biodistribution, necrosis uptake and tumour retention of iodine-123 or iodine-131 labelled hypericin ((123/131)I-Hyp), a necrosis avid agent for an anticancer radiotherapy.
METHODS
(123/131)I-Hyp was prepared with Iodogen as
Iodine-131‑labeled monoiodohypericin (131I‑Hyp) is a necrosis avid compound used as a complementary anticancer agent. Herein, the biodistribution in rats with re-perfused partial liver infarction (RPLI) was used to estimate its human internal radiation dosimetry. Iodine-123‑labeled monoiodohypericin
Hypericin is a necrosis avid agent useful for nuclear imaging and tumor therapy. Protohypericin, with a similar structure to hypericin except poorer planarity, is the precursor of hypericin. In this study, we aimed to investigate the impact of this structural difference on self-assembly, and
Rapid noninvasive delineation of necrotic myocardium in ischemic regions is very critical for risk stratification and clinical decision-making but still challenging. This study aimed to evaluate the necrosis avidity of radioiodinated hypocrellins and its potential for rapidly imaging necrotic