14 rezultatima
UDP-L-rhamnose is required for the biosynthesis of cell wall rhamnogalacturonan-I, rhamnogalacturonan-II, and natural compounds in plants. It has been suggested that the RHM2/MUM4 gene is involved in conversion of UDP-D-glucose to UDP-L-rhamnose on the basis of its effect on
Glycosylation is a key modification for most molecules including plant natural products, for example, flavonoids and isoflavonoids, and can enhance the bioactivity and bioavailability of the natural products. The crystal structure of plant rhamnosyltransferase UGT89C1 from Arabidopsis thaliana was
In plants, UDP-L-rhamnose is one of the major components of cell wall skeleton. Rhamnose synthase plays a key role in rhamnose synthesis which converts UDP-D-glucose into UDP-L-rhamnose in plants. In this study, we isolated the 1058 bp promoter region of the rhamnose synthase gene AtRHM1 from
L-Rhamnose (Rha) is synthesized via a similar enzymatic pathway in bacteria, plants and fungi. In plants, nucleotide-rhamnose synthase/epimerase-reductase (NRS/ER) catalyzes the final step in the conversion of dTDP/UDP-α-D-Glc to dTDP/UDP-β-L-Rha in an NAD(P)H dependent manner. Currently, only
Acceptor substrates flexibility of previously characterized flavonol 7-O-rhamnosyltransferase (AtUGT89C1) from Arabidopsis thaliana was explored with an endogenous nucleotide diphosphate sugar and five different classes of flavonoids (flavonols, flavones, flavanones, chalcone and stilbenes) through
The uridine diphosphate glycosyltransferase (UGT) plays the central role in glycosylation of small molecules by transferring sugars to various acceptors including bioactive natural products in plants. UGT89C1 from Arabidopsis thaliana is a novel UGT, a rhamnosyltransferase, specifically recognizes
Pollination triggers not only embryo development but also the differentiation of the ovule integuments to form a specialized seed coat. The mucilage secretory cells of the Arabidopsis thaliana seed coat undergo a complex differentiation process in which cell growth is followed by the synthesis and
Cell and cell wall growth are mutually dependent processes that must be tightly coordinated and controlled. LRR-extensin1 (LRX1) of Arabidopsis thaliana is a potential regulator of cell wall development, consisting of an N-terminal leucine-rich repeat domain and a C-terminal extensin-like domain
Two sustainable and cost-effective cascade enzymatic systems were developed to regenerate uridine diphosphate (UDP)-α-D-glucose and UDP-β-L-rhamnose from sucrose. The systems were coupled with the UDP generating glycosylation reactions of UDP sugar-dependent glycosyltransferase (UGT) enzymes
Rhamnose is required in Arabidopsis thaliana for synthesizing pectic polysaccharides and glycosylating flavonols. RHAMNOSE BIOSYNTHESIS1 (RHM1) encodes a UDP-l-rhamnose synthase, and rhm1 mutants exhibit many developmental defects, including short root hairs, hyponastic cotyledons, and left-handed
The crystal structure of Escherichia coli rhamnose mutarotase (YiiL) is completely different from the previously reported structures of the Lactococcus lactis galactose mutarotase and the Bacillus subtilis RbsD (pyranase). YiiL exists as a locally asymmetric dimer, which is stabilized by an
Flavonoids are plant-based polyphenolic biomolecules with a wide range of biological activities. Glycosylated flavonoids have drawn special attention in the industries as it improves solubility, stability, and bioactivity. Herein, we report the production of astilbin (ATN) from taxifolin (TFN) in
The lipopolysaccharide (LPS) O-antigen structure of the plant pathogen Rhizobium radiobacter strain TT9 and its possible role in a plant-microbe interaction was investigated. The analyses disclosed the presence of two O-antigens, named Poly1and Poly2. The repetitive unit of Poly2is constituted by
The main functions of glycosylation are stabilization, detoxification and solubilization of substrates and products. To produce glycosylated products, Escherichia coli was engineered by overexpression of TDP-L-rhamnose and TDP-6-deoxy-D-allose biosynthetic gene clusters, and flavonoids were