14 rezultatima
In an approach to helical self-aggregation, C2-symmetric cavity compounds based on the fusion of the bicyclo[3.3.1]nonane and indole framework and incorporating two 2-pyridone hydrogen-bonding motifs, compounds (-)-4 (pyrrole N-butyl) and (-)-5 (pyrrole N-decyl), have been synthesized. The
The synthesis and assembly properties of a new water-soluble deep-cavity cavitand are discussed. For a homologous series of alkanes, the host can form a range of approximately isoenergetic 1:1, 2:1, and 2:2 complexes. As a result of this 'confluence' of binding and assembly the host displays an
Dental caries is a multi factorial disease that starts with microbiological shifts affected by salivary flow, composition, exposure to fluoride, consumption of dietary sugars, and preventive behaviours. The Streptococcus mutans (S. mutans) is an initiator of caries because there
Grams scale synthesis of an octaaminocryptand L(2) with high yield is obtained in one-pot by low-temperature [2 + 3] condensation of tris(2-aminoethyl)amine with isophthalaldehyde, followed by sodium borohydride reduction. Structural aspects of octaaminocryptand L(2) x MeOH, binding of iodide
Corporal mechanisms attributed to cancer, such as oxidative stress or the action of cytochrome P450 enzymes, seem to be responsible for the generation of a variety of volatile organic compounds (VOCs) that could be used as non-invasive diagnosis biomarkers. The present work presents an attempt to
The enantiomers of a variety of N-alkyl-, N-aralkyl-, and N-cyclopropylalkyl-9β-hydroxy-5-(3-hydroxyphenyl)morphans were synthesized employing cyanogen bromide and K2CO3 to improve the original N-demethylation procedure. Their binding affinity to the μ-, δ-, and κ-opioid receptors (ORs) was
Octyl- and nonylphenols in the environment have been proposed to function as estrogens. To gain insight into their structural essentials in binding to the estrogen receptor, a series of phenols with saturated alkyl groups at the para position, HO-C6H4-CnH2n+1 (n = 0-12), were examined for their
The ability of two S,S'-(alkane-1,omega-diyl) bisisothiouronium dibromides, three N,N'-(alkane-1, omega-diyl) bis guanidinium dinitrates and N,N'-bis (3-guanidinopropyl)piperazine dinitrate to inhibit constitutive (i.e. endothelial and neuronal forms) and inducible forms of nitric oxide synthases
Oxygenation of [CuI(L1)(NC-CH3)]+ (L1 = dimethyl 2,4-bis(2-pyridinyl)-3,7-diazabicyclo-[3.3.1]-nonane-9-on-1,5-dicarboxylate) leads to a relatively stable mu-peroxo-dicopper(II) product. The stability of this type of oxygenation product has been shown before to be the result of the square pyramidal
Triazine-based preorganized tripodal receptors are reported as efficient transmembrane Cl- carriers. These receptors were designed based on triazine core and 3,7-diazabicyclo[3.3.1]nonane arms to facilitate preorganized cavity formation. Each bicyclic arm was further functionalized to control
Synthesis, solvent-, and guest-controlled self-assembly, and self-sorting of new hydrogen-bonded chiral cavity receptors are reported. The design of the cavity is based on the cyclic self-aggregation of monomers containing the 4H-bonding ureidopyrimidinone motif fused with the bicylo[3.3.1]nonane
Hepta- and octadentate bispidines (3,7-diazabicyclo[3.3.1]nonane, diaza-adamantane) with acetate, methyl-pyridine, and methyl-picolinate pendant groups at the amine donors of the bispidine platform have been prepared and used to investigate BiIII coordination chemistry. Crystal structure
A series of new receptor molecules derived from 2,4,6,8-tetraazabicyclo[3.3.1]nonane-3,7-dione (propanediurea) is described. These molecules possess a cavity which is defined by two nearly parallel aromatic side walls positioned on top of a bis-urea framework. The resulting "U-shaped" clip molecules
Four very rigid second generation bispidine-based ligands (bispidine = 3,7-diazabicyclo[3.3.1]nonane; tetra-, penta- and hexadentate; exclusively tertiary amine donors except for one of the pentadentate ligands, where one of the donors is a pyridyl group) and their Co(II), Ni(II), Cu(II), and Zn(II)