Stranica 1 iz 61 rezultatima
BACKGROUND
Larvae of the Japanese beetle, Popillia japonica (Coleoptera: Scarabaeidae), have a patchy distribution in soils, which complicates detection and management of this insect pest. Managed turf systems are frequently under pest pressure from fungal pathogens, necessitating frequent fungicide
Large patch disease, caused by Rhizoctonia solani AG2-2, is the most devastating disease in Zoysiagrass (Zoysia japonica). Current large patch disease control strategies rely primarily upon the use of chemical pesticides. Streptomyces sp. S8 is known to possess exceptional antagonistic properties
Dollar spot, caused by Sclerotinia homoeocarpa, is the most prevalent and economically important turfgrass disease in North America. Increasing levels of fungicide resistance, coupled with tightening environmental scrutiny of existing fungicides, has left fewer options for managing dollar spot. More
Brown patch, incited by Rhizoctonia solani Kuhn, and Pythium blight, caused by Pythium spp. are two of the diseases most frequently observed on turfgrass in high maintenance stands, as on golf courses. In such conditions the control strategies, based on chemicals, are particularly difficult due to
Dollar spot is one of the most common diseases of golf course turfgrass and numerous fungicide applications are often required to provide adequate control. Weather-based disease warning systems have been developed to more accurately time fungicide applications; however, they tend to be ineffective
Computer simulations of fungicide loading in surface water runoff were conducted with fungicides commonly used in golf course fairways and lawns in Kentucky. For all fungicides, values for degradation half-life and organic carbon partition coefficient were obtained from published sources; other
The dicarboximide fungicide class is commonly used to control Sclerotinia homoeocarpa, the causal agent of dollar spot on turfgrass. Despite frequent occurrences of S. homoeocarpa field resistance to iprodione (dicarboximide active ingredient), the genetic mechanisms of iprodione resistance have not
Residual efficacy of five fungicides (azoxystrobin, flutolanil, metconazole, polyoxin D, and pyraclostrobin) applied to creeping bentgrass (Agrostis stolonifera) maintained under golf course fairway conditions was determined using a bioassay method. During 2010 and 2011, six different field
The baseline sensitivity of a California population of Colletotrichum cereale (turfgrass anthracnose) to the sterol demethylation inhibitor (DMI) fungicide propiconazole was determined using an in vitro assay with known reproducibility. The 50% effective dose (ED50) values for
Soil water repellency in golf putting greens may induce preferential "finger flow," leading to enhanced leaching of surface applied fungicides. We examined the effects of root zone composition, treatment with a non-ionic surfactant, and the use of the fungicide iprodion or a combination of
Experiments were designed to assess reports of synergism between propiconazole and other fungicides to control dollar spot in creeping bentgrass. In 2004 and 2006, two field experiments were conducted near Griffin, GA, and repeated near West Lafayette, IN. A third experiment was conducted at the
In cold climates, fungicides are used on golf greens to prevent snow mould causing serious damage to the turf. However, fungicide residues have been detected in runoff from golf courses, which may lead to restrictions on use. There is therefore an urgent need to improve understanding of the
Dollar spot, caused by Sclerotinia homoeocarpa, is one of the most significant diseases of cool-season turfgrass on golf courses. Resistance to the benzimidazole, dicarboximide, and succinate dehydrogenase inhibitor (SDHI) classes and reduced sensitivity to the sterol-demethylation inhibitor (DMI)
Turf managers often rely on fungicides to limit damage caused by root diseases. Because fungicides are applied to aboveground surfaces and do not move basipetally, they are effective against root pathogens only when fungitoxic concentrations migrate to the rhizosphere. This research focused on the
Dollar spot (caused by Sclerotinia homoeocarpa) is the most economically important turfgrass disease in North America. This disease is primarily controlled by fungicide applications on golf courses; however, fungicide resistance has been confirmed in three of the four systemic fungicide classes